12.7~12.8量化、预测器(误差)、鲁棒性、编码、相应辅读

 量化器

Linear-scaling  quantizer是一种量化器(quantizer)算法,用于将连续的输入值转换为离散的输出值。在信号处理、图像处理和通信系统中,量化器是一种常见的组件。

Linear-scaling  quantizer的工作原理如下:

1.  确定输入范围:首先,确定输入信号的取值范围,通常用最小值和最大值表示。

2.  确定量化级数:其次,根据所需的分辨率,确定量化级数。量化级数越多,分辨率越高,但同时也会增加计算复杂度和存储需求。

3.  设定量化间隔:根据输入范围和量化级数,设定一个适当的量化间隔。量化间隔越小,量化误差越小,但可能会导致计算量和存储空间的增加。

4.  量化输出值:将输入信号的每个值映射到离散的输出值。具体方法是,将输入值除以量化间隔,然后取整。这样,输入值就被转换为离散的输出值。

5.  反量化:如果在后续处理中需要使用量化后的数据,可以通过类似的方法进行反量化。

Linear-scaling  quantizer的优点是简单易实现,计算量和存储需求相对较低。但其缺点是量化误差较大,可能导致信号或图像的质量下降。在实际应用中,可以根据需求选择合适的量化器算法。此外,还有其他的量化器算法,如均匀量化、非线性量化等,具有不同的性能和应用场景。

B

量化器是一种用于将连续数据映射到离散值的算法,主要用于数据压缩和信号处理。在数据压缩中,量化器有助于减小数据的精度,从而降低存储和传输的成本。量化的基本思想是将输入数据分成若干个相等大小的区间(bin),然后将每个区间内的数据映射到一个固定的值(通常是该区间的中心值)。以下是一些常见的量化器类型:

  1. 线性量化器:线性量化器是一种常用的量化器,用于实现绝对误差控制在有损压缩过程中。它构建一组等大小的连续区间,每个区间的长度为两倍的误差界限。然后,预测误差将被转换为包含它的区间的索引。超出范围的预测误差被视为不可预测的,并单独进行编码和存储。

  2. 对数量化器:对数量化器用于调整区间大小以实现更集中的误差分布。它通过将输入数据进行对数缩放来实现更快的编码和存储。

  3. 元素级量化器:元素级量化器用于为每个数据点提供细粒度误差控制。它允许用户为每个数据点设定不同的误差界限,从而实现更精确的误差控制。

在实际应用中,量化器可以根据数据特征和用户需求进行定制,以实现更高的压缩质量和性能。例如,SZ3框架允许用户根据数据特征和错误界限要求定制预测误差有界失真压缩模型,从而优化压缩质量和性能。

量化器负责编码/解码不可预测的数据,因为它在压缩过程中引入了一种特殊的机制。对于那些无法预测的数据,量化器使用一种称为"Unpred-aware Quantizer"的方法对这些数据进行处理。这种方法受到变换编码方法的启发,将数据按位存储,而不是直接进行截断。这种编码方法在此阶段不会改变编码大小,但在采用无损压缩时,它会提供更好的压缩比。

可预测的数据在保存/加载函数中实现,因为这些函数负责处理预测器所需的元数据。在压缩过程中,保存函数记录了预测器的必要信息(例如回归预测器的系数),而在解压过程中,加载函数用于重建预测器。这样,预测器可以在压缩和解压过程中正确地处理可预测的数据

将数据按位存储而不是直接进行截断的方法是将数据以二进制形式存储,而不是简单地去除不需要的数据部分。这种方法可以更好地利用数据的相关性,从而提高压缩效果。

例如,在SZ3-Pastri压缩器中,为了处理不可预测的数据,开发了一种特殊的量化器(Unpred-aware Quantizer)。该量化器将数据按位平面存储,而不是直接截断。这样,在逐位平面存储中,有意义的数据位仅出现在较少显著位平面上,因此在连续的零中获得良好的压缩效果。与直接截断相比,此编码方法在此阶段不会改变编码大小;然而,其压缩编码格式在采用无损压缩时将保证更好的压缩比。

线性量化缩放器

线性缩放量化器是一种常见的量化方法,用于将连续的数据映射到离散的值。在线性缩放量化器中,数据被划分成多个区间,每个区间对应一个离散值或编码。

每个区间的大小通常选择为两倍的误差范围的原因是,这样可以保证相对较小的误差能够被量化器捕捉到并编码。

考虑一个正态分布的数据分布,数据的误差范围是标准差的两倍,也就是说,大约95%的数据位于平均值加减两倍标准差的范围内。如果我们将这个误差范围分成多个区间,每个区间的大小都是两倍的误差范围,那么大部分数据都能够被量化器准确地编码。

如果区间的大小小于两倍的误差范围,那么在进行量化时,一部分数据将无法精确地对应到某个区间,从而导致了额外的误差。而如果区间的大小大于两倍的误差范围,那么一些区间将包含较少的数据,而另一些区间将包含较多的数据,使得数据的编码不均衡,可能导致信息的丢失和恢复错误。

因此,选择每个区间大小为两倍的误差范围是一种折衷,可以在保证较小的误差损失的同时,保持编码的准确性和均衡性。

例子

当使用线性缩放量化器时,每个区间大小是两倍的误差范围的例子包括:

1. 数字信号处理(DSP)中的音频量化:音频信号通常通过模拟到数字的转换进行采样,并使用线性缩放量化器将连续的音频样本映射到离散的数字表示。例如,如果音频信号的采样范围是±1,每个区间的大小可以是±0.5,以确保较小的变化也能够被准确地表示。

2. 图像压缩中的亮度量化:在图像压缩算法中,亮度通常用离散的值来表示。线性缩放量化器被用来将连续的亮度值映射为离散的亮度级别。例如,如果亮度范围是0到255,每个区间的大小可以是16,以确保较小的亮度变化也能够被准确地表示。

3. 传感器数据采集中的温度量化:在传感器数据采集中,温度通常使用数字量化进行表示。线性缩放量化器被用来将连续的温度值映射为离散的数字。例如,如果温度范围是-50到50摄氏度,每个区间的大小可以是5摄氏度,以确保较小的温度变化也能够被准确地表示。

这些例子中的线性缩放量化器都选择每个区间大小为两倍的误差范围,以保证数据的量化精度和编码准确性。

误差范围

误差范围是指一个量或测量过程中可能产生的误差的最大允许值或范围。它可以理解为一个允许的误差值,即在实际测量或计算中,实际结果与理论或期望结果之间的最大差异。

下面是一些例子,可以帮助理解误差范围的概念:

1. 温度计的误差范围:假设一个温度计的测量范围是0到100摄氏度,其误差范围为±0.5摄氏度。这意味着,无论温度实际是多少,温度计的测量结果与真实值之间的差异不会超过±0.5摄氏度。

2. 线性尺的误差范围:考虑一个标准长度为1米的线性尺,其误差范围为±0.01米。这意味着,在用这把尺测量长度时,测量结果与实际长度之间的差异不会超过±0.01米。

3. 数据传输的误差范围:在数字通信中,传输数据时会伴随着一些误差,例如位传输错误。假设某数据通信系统的误差范围为1%,这意味着在传输过程中,接收到的数据与发送的数据之间的差异不会超过1%。

4. 电阻值的误差范围:在电路中使用的电阻元件通常有一个额定值和一个误差范围。例如,一个100欧姆电阻元件,其误差范围为±5%。这意味着实际电阻值可能在95欧姆到105欧姆之间。

这些例子中,误差范围用于描述测量、计算或传输过程中的允许误差,并帮助评估结果的准确性。通过了解误差范围,人们可以对测量结果或计算结果的可靠性有所了解,并在需要时采取相应的补偿或校正措施。

量化与预测的对比

就是说,数据呈现某种规律时,直接进行拟合函数的预测,每一块的数据,都只存储对应的函数信息以及自变量信息,就可以代表/计算出来相应的数据

而那些无法被预测,不能用函数表示出来的数据,就直接进行量化存储,所谓量化存储就是,将离散的数据,高分辨率的数据,集中一点,降低数据的分辨率,从而达到压缩存储的效果

预测器

  Lorenzo预测器是一种基于统计学方法的预测器,主要用于时间序列数据的预测。它是由John  E.  Bean和David  M.  Bean兄弟在20世纪90年代开发的。Lorenzo预测器最初用于金融市场的预测,后来逐渐应用于其他领域的预测任务。

Lorenzo预测器的主要原理如下:

1.  数据预处理:对输入的时间序列数据进行预处理,包括去除异常值、平滑数据、归一化等。

2.  特征提取:选取适当的时间窗口,计算窗口内数据的统计特征,如均值、标准差、偏度、峰度等。

3.  建立预测模型:根据历史数据的统计特征,建立一个预测模型。常用的模型包括线性回归、多元线性回归、神经网络等。

4.  预测:使用建立的预测模型,对未来的时间序列数据进行预测。

5.  模型优化:根据预测结果和实际值的误差,不断调整模型参数,优化预测性能

Lorenzo预测器的优点在于它具有较强的适应性和鲁棒性,可以应对数据中的噪声和异常值。此外,它还可以根据数据的变化自动调整预测模型,从而提高预测准确性。然而,Lorenzo预测器也存在一定的局限性,如对数据中的趋势和季节性变化不敏感,以及对新数据的预测准确性较低。

在实际应用中,Lorenzo预测器可以用于金融市场、销售预测、库存管理等领域。需要注意的是,预测结果可能会受到数据质量、模型选择和参数调整等因素的影响,因此需要根据具体场景进行优化。

鲁棒性

鲁棒性是指系统或算法对于异常情况或干扰的抵抗能力。在数据分析和机器学习领域,鲁棒性是指模型在面对异常、噪声或不完整数据时仍能保持良好的性能和稳定性

具体来说,鲁棒性可以体现在以下几个方面:

1. 异常值处理:鲁棒性模型能够有效处理数据中的异常值,不会过度受到异常值的影响。它可以通过采用鲁棒的统计方法,如中位数、四分位数等,来抑制异常值的影响。

2. 噪声容忍:鲁棒性模型能够在存在噪声的情况下仍能给出准确的预测结果。它能够通过模型的设计和参数调整来减小噪声的影响,或者采用噪声鲁棒的算法来提高模型的稳定性。

3. 数据不完整性:鲁棒性模型能够处理数据集中的缺失值、不完整数据或者特征较为稀疏的情况。它可以通过合理的缺失值处理方法,如插补或忽略,来处理这些情况。

4. 模型稳定性:鲁棒性模型对于数据中的小变动,如样本数量的增减或特征的微小变化,不会造成较大的预测偏差。它能够保持模型的稳定性,避免不必要的波动。

鲁棒性模型在面对现实世界的数据时尤为重要,因为真实数据往往包含噪声、异常值或不完整数据。通过提高模型的鲁棒性,可以提高模型在实际应用中的效果和可靠性。

逐点相对误差边界

Point-wise relative error bounds(逐点相对误差边界)是针对每个数据点的相对误差进行界定的一种方法。在数据处理、模型评估等领域中,点对点相对误差边界被用来限制和评估模型预测或数据处理的准确性。

点对点相对误差边界可以通过以下公式计算:

相对误差边界 = |预测值 - 真实值| / |真实值|

其中,预测值是模型根据输入特征进行预测或处理得到的值,真实值是对应的实际观测值或者已知值。相对误差边界通常是一个小于1的值(例如,0.1 表示10%的相对误差边界)。如果某个数据点的相对误差超过了边界值,那么该点被认为是不满足误差要求的。

使用点对点相对误差边界的目的是评估和控制模型预测或数据处理的准确性。较小的边界值要求模型对每个数据点都有较小的预测误差,这可能会增加模型的复杂性和计算开销。较大的边界值允许模型在每个数据点上具有更大的误差,但可能降低整体预测或处理的准确性。

点对点相对误差边界在许多领域中都有广泛应用,如数据压缩、图像处理、信号处理和机器学习等。它可以用来评估模型的准确性,并帮助确定适当的模型选择或调整模型参数。

编码器

Huffman编码器是一种常用的编码算法,用于将数据进行压缩并减少存储空间的需求。它是由David Huffman在1952年提出的,被广泛应用于数据压缩和信息传输领域。

Huffman编码的基本原理是根据数据的频率分布来设计不等长的编码,使得频率高的数据用较短的编码表示,频率低的数据用较长的编码表示。这样,可以实现对数据进行高效的压缩。

Huffman编码的步骤如下:

1. 统计频率:首先,对输入数据进行统计,计算每个数据值的频率或出现次数。

2. 构建Huffman树:根据数据的频率构建一棵Huffman树。Huffman树是一种二叉树,其中每个叶子节点表示一个数据值,而非叶子节点表示合并的频率。树的构建过程通常使用最小堆或优先队列等数据结构。

3. 分配编码:从Huffman树的根节点开始,遍历树的路径,给每个叶子节点分配一个唯一的二进制编码。在遍历过程中,左路径一般表示0,右路径表示1,直到达到叶子节点。

4. 编码数据:根据分配的编码,将输入数据逐个替换为对应的Huffman编码。

5. 存储压缩数据:将编码后的数据存储为压缩文件或传输给接收方。

Huffman编码的优点在于可以根据数据的频率分布进行自适应编码,提供较高的压缩率。编码和解码过程相对简单,可以快速进行。然而,Huffman编码也存在一些限制,如需要事先知道数据的频率分布,以及编码表的存储需求等。

Huffman编码通常与其他压缩算法如Lempel-Ziv编码结合使用,以实现更高效的压缩效果。

PIPELINE

在压缩算法中,"pipeline"(流水线)指的是一种将不同的处理步骤连接在一起,形成一个连续的处理流程的方式。每个处理步骤接收输入数据,并输出给下一个步骤进行处理,从而使数据可以被逐步转换和压缩。

Pipeline在压缩算法中起到了以下几个作用:

1. 模块化和可扩展性:通过将不同的处理步骤划分为独立的模块,并按照特定的顺序进行连接,可以实现算法的模块化和可扩展性。每个模块专注于特定的任务,使得算法的设计和实现更加清晰和灵活。

2. 优化和加速:通过将处理步骤连接在一起,可以将数据从一个步骤直接传递到下一个步骤,减少了数据传输和复制的开销。这使得数据处理和压缩能够以流水线方式进行,提高了算法的运行效率和处理速度。

3. 减少存储需求:通过在流水线中的不同步骤中进行数据转换和压缩,可以逐步减少数据的冗余性和存储需求。每个步骤都对数据进行特定的处理,使得最终的压缩效果更好。

4. 灵活性和适应性:由于流水线中的每个步骤都是独立的模块,因此可以根据具体需求进行增加、删除或替换。这样,可以根据不同的压缩场景和数据特点,调整流水线的结构和组合,以达到更好的压缩效果。

总之,流水线在压缩算法中起到了连接不同处理步骤、优化性能、减少存储需求和增加灵活性的作用。通过精心设计和配置流水线,可以实现高效的数据压缩和处理。

例子

A

一个常见的例子是在图像压缩算法中使用流水线。

图像压缩算法通常包括以下几个主要步骤:色彩空间转换、变换、量化和编码。这些步骤可以通过流水线连接在一起,以实现高效的压缩。

1. 色彩空间转换:将原始图像从RGB色彩空间转换为YUV或YCbCr色彩空间。这一步骤可以通过矩阵变换和颜色空间转换算法完成。

2. 变换:对转换后的色彩通道进行变换,常用的是使用离散余弦变换(Discrete Cosine Transform,DCT)对每个通道进行频域变换。DCT能够将图像中的高频信息转换为低频信息,从而使得压缩效果更好。(数据预处理)

3. 量化:对变换后的频域系数进行量化。量化是指将系数的精度降低,并将其映射到更小的取值范围这一步骤利用了人眼对图像细节的感知不敏感,从而实现了数据的压缩。

4. 编码:使用Huffman编码或其他编码算法对量化后的系数进行编码。编码的目的是将数据转换为更小的编码长度,以进一步减少存储空间的需求。

这些步骤可以以流水线的形式连接在一起。图像数据经过一系列的处理步骤,从原始的RGB空间转换为量化后的DCT系数,并最终通过编码转换为压缩后的数据。

通过使用流水线,图像压缩算法可以实现数据的逐步转换和压缩,提高压缩效率和处理速度。同时,流水线的模块化结构也使得算法的设计和优化更加灵活和可扩展。

B

一个压缩算法中的pipeline例子是Lempel-Ziv-Welch(LZW)压缩算法。该算法通过使用字典来替换重复的模式,并将其编码为更短的代码来实现数据压缩。

在LZW算法中,编码和解码过程中使用了一个pipeline来提高效率。具体步骤如下:

1. 初始化字典:首先,初始化一个包含所有可能字符的字典,每个字符都有一个唯一的编码。这些初始编码可作为字典的初始条目。

2. 编码:对于待压缩的数据,首先从输入数据中读取一个字符,将其与已知的字典条目(即编码)进行匹配。如果匹配成功,继续读取下一个字符,将该字符与匹配到的编码进行拼接,直到无法找到匹配的编码。然后将最长匹配的编码输出并添加到字典中作为新的条目,然后重复这个过程,直到所有输入数据都被编码。

3. 解码:在解码过程中,将编码后的压缩数据逐个读取,根据字典中的条目解码为原始数据。首先从输入中读取一个编码,查找它在字典中对应的字符串,输出该字符串。然后读取下一个编码,将前一个解码出的字符串与这个编码对应的字符串拼接,输出结果,以此类推,直到所有压缩数据都被解码。

通过使用pipeline,在编码和解码过程中,可以逐步处理数据,避免一次性处理大量数据,提高了压缩和解压缩的效率。

文章

本文提到的几个实例如下:

  1. 预处理器:用于在实际压缩之前对输入数据集进行处理,以实现高效或满足不同需求。一个典型的预处理器实例是对数变换,用于实现点对点相对误差约束。

  2. 预测器:预测器是预测基础压缩器的关键组件,它们根据不同的模式对数据进行去相关处理。文章中提到的实例包括线性缩放量化器(用于绝对误差控制)和对数刻度量化器(用于调整二进制表示的大小)。

  3. 量化器:量化器用于将数据转换为离散值以进行有效压缩。一个实例是线性缩放量化器,它构造一组等大小的连续区间,每个区间都有两倍的误差范围。

  4. 编码器:编码器用于将量化后的数据进行进一步压缩。文章中提到的实例包括哈夫曼编码器(一种经典可变长度编码算法)和固定哈夫曼编码器(使用预定义的哈夫曼树进行编码)。

  5. 无损压缩器:无损压缩器用于进一步压缩编码器产生的压缩二进制格式。本文中提到的无损压缩器模块主要作为最先进无损压缩库的代理,通过compress和decompress接口调用外部库进行压缩和解压。

数据预处理阶段的实例主要有:

  1. 对数变换:用于实现点对点相对误差约束的压缩问题,通过将数据转换为对数域,并使用绝对误差约束进行压缩。
  2. SZ-Pastri:可能需要预处理步骤来识别基于模式的预测器所需的合适参数,例如块大小和模式大小。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值