66Kevin
码龄6年
关注
提问 私信
  • 博客:434,280
    社区:168
    434,448
    总访问量
  • 75
    原创
  • 545,003
    排名
  • 2,009
    粉丝
  • 6
    铁粉

个人简介:英国Computer Science在读本科,记录学习cs的一点一滴,最通俗的语言讲述神奇的计算机科学,计算机小白的进化史

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-01-17
博客简介:

Kevin.wang

博客描述:
英国Computer Science本科在读,用最通俗的语言讲述计算机科学,见证计算机小白的进化
查看详细资料
个人成就
  • 获得1,416次点赞
  • 内容获得94次评论
  • 获得4,750次收藏
  • 代码片获得549次分享
创作历程
  • 9篇
    2021年
  • 16篇
    2020年
  • 53篇
    2019年
成就勋章
TA的专栏
  • Keras
    5篇
  • 机器学习
    10篇
  • python
    4篇
  • leetcode
    1篇
  • 计算机视觉
    3篇
  • Haskell
    4篇
  • Java之核心应用
    10篇
  • Linux
    1篇
  • Java之高级应用
    3篇
  • Java函数式编程
    10篇
  • 网络编程
    2篇
  • Java单元测试框架-JUnit4
    3篇
  • 操作系统OS
    4篇
  • 算法
    2篇
  • C
    8篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Agents and Multi-Agents System 智能与多智能体系统

文章目录Week2 Embedded Agents2.1 Math revision2.2 Accessible and inaccessible environments2.3 Deterministic and non-deterministic environments2.4 Static and dynamic environments2.5 Formal specification of an embedded agent2.6 Utility FunctionsWeek3:Deductive,r
原创
发布博客 2021.12.31 ·
3458 阅读 ·
7 点赞 ·
1 评论 ·
17 收藏

Batch Norm和Dropout问题大总结

文章目录1. 为什么训练时要保证每层的方差一致?2. 什么是Covariate Shift现象?3. Batch Norm中为什么归一化后还要引入γ\gammaγ和β\betaβ?4. Batch Norm训练和测试的区别5. 为什么Dropout后需要Rescale?6. dropout与Batch Norm联合使用会产生哪些问题?7. 如何减轻该状况?1. 为什么训练时要保证每层的方差一致?每层的方差保持一致可以减缓梯度消失或爆炸。简单的说,神经网络的误差反向传播,忽略激活函数的偏导数时,相当于自后
原创
发布博客 2021.05.21 ·
1304 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

详解keras中的Mask机制

文章目录一. Mask背景1.2 例子11.2 例子2二. 原理三. 方式3.1 配置keras.layers.Embedding 层3.2 添加keras.layers.Masking层3.3 自定义一. Mask背景在NLP中,mask使用最为常见。在NLP中,许多句子都有着不同的长度,我们往往需要按照一定的长度, 对句子进行填补和截取操作。 一般使用keras.preprocessing.sequence包中的pad_sequences方法, 在句子前面或者后面补0. 但是这些零是我们不需要的,
原创
发布博客 2021.04.08 ·
4414 阅读 ·
10 点赞 ·
1 评论 ·
25 收藏

机器学习中常见的编码形式

文章目录一. 常见的特征类型二. 编码2.1 序号编码(Ordinal Encoding)2.2独热编码(One-hot Encoding)2.3 标签编码 (Label Encoding)2.4 频数编码(Frequency Encoding/Count Encoding)2.5 目标编码(Target Encoding)一. 常见的特征类型一般特征可以分为两大类特征,连续型和离散型特征。而离散型特征既有是数值型的,也有类别型特征。例如性别(男、女)、成绩等级(A、B、C)等等。连续型特征的原始形态就
原创
发布博客 2021.04.05 ·
5419 阅读 ·
16 点赞 ·
5 评论 ·
82 收藏

Python的map和reduce函数最全解析

文章目录一. Map函数原理二. Reduce函数原理一. Map函数原理map()方法会将一个函数f(x)映射到序列的每一个元素上,生成新序列,包含所有函数返回值。再上图的例子中,函数f(x)=x2f(x)=x^2f(x)=x2将序列[1,2,3,4,5,6,7,8,9][1,2,3,4,5,6,7,8,9][1,2,3,4,5,6,7,8,9]映射到[1,4,9,16,25,36,49,64,81][1,4,9,16,25,36,49,64,81][1,4,9,16,25,36,49,64,81
原创
发布博客 2021.03.28 ·
1028 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Leetcode 206.反转链表(迭代与递归)最全解析

题目:解题思路:反转箭头指向即可cur设置为第一个元素1,pre为cur前的元素设置为None先用temp保存下来cur的下一个元素temp = cur.next再将cur的箭头(cur.next)指向pre:cur.next = prepre与cur都向后移循环下去即可class ListNode: def __init__(self, x): self.val = x self.next = Noneclass Solution:
原创
发布博客 2021.03.08 ·
467 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Keras中layers.add()与layers.concatenate()的区别

文章目录一. tf.keras.layers.add()二. tf.keras.layers.concatenate()一. tf.keras.layers.add()只进行相应元素的相加,H,W,C都不改变例子:from keras.models import Modelfrom keras.layers import Dense,add,Inputfrom keras.layers.merge import concatenatefrom keras.utils.vis_utils imp
原创
发布博客 2021.01.21 ·
10132 阅读 ·
18 点赞 ·
0 评论 ·
70 收藏

Keras的两种模型:序列模型(Sequential)和通用模型(Model)

文章目录一.序列模型(Sequential)1.1 list构造1.2 add()构造二.通用模型(Model)Keras中有两种不同的模型:序列模型(Sequential)和通用模型(Model)一.序列模型(Sequential)序列模型的两种创建方式:list构造和add()构造1.1 list构造通过向Sequential模型传递一个layer的list来构造该模型:from keras.models import Sequentialfrom keras.layers import
原创
发布博客 2021.01.20 ·
2646 阅读 ·
4 点赞 ·
0 评论 ·
17 收藏

Keras中dense层原理及用法解释

文章目录一.全连接层Fully Connection作用二.API解释2.1 示例1:dense层为输入层2.2 示例2:dense层为中间层2.3 示例3:dense层为输出层三.实现过程四.数学解释一.全连接层Fully Connection作用全连接的核心操作就是矩阵向量乘积y=W∗xy =W*xy=W∗x本质就是由一个特征空间线性变换到另一个特征空间。因此,dense层的目的是将前面提取的特征,在dense经过非线性变化,提取这些特征之间的关联,最后映射到输出空间上。如下3x3x5的数据,
原创
发布博客 2021.01.20 ·
115008 阅读 ·
153 点赞 ·
3 评论 ·
714 收藏

神经网络中batch_size,epoch,batch,iteration/step的区别

我们知道,简单来说,深度学习就是很深很深的神经网络(这一说法并不准确,但姑且让我们这么说),也就是说,有很多层,每层可能有很多神经元,结构也可能比较复杂。然后相应的,数据集也可能比较大。那跑一遍(迭代)会比较慢。所以人们就想出了一个变通的办法,就是每次只使用数据集中的部分样本,这个数目就称为batch_size.虽然只使用了部分样本,但很多时候已经足以优化权重,降低损失函数了。这样训练效率高很多,训练时间也能缩短不少。不过这样一来,一次迭代就不一定完整跑遍数据集中的所有样本了。那在比较的时候,就不太方便
原创
发布博客 2020.11.08 ·
1662 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

Python for循环前有函数

def add(a): return a+1 def main(): list = [1,2,3,4,5] xs = [add(a) for a in list] print(xs) if __name__ == '__main__': main()Ouput:[2, 3, 4, 5, 6]先执行for a in list,将每个遍历出的a放到add()函数内返回出所有经过add()函数后的值用法:所有值转换为字符串:test1
原创
发布博客 2020.11.07 ·
1570 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

python中类名(..)(..)的情况及_call_函数解析

文章目录1.类名(..)(..):2. `__call__()`函数又有什么用呢?3.举例:4. 总结上一篇我们讲了python中函数后面双括号的情况,本文该讲类名(…)(…)的情况。1.类名(…)(…):举例说明:class test(): def __init__(self,name,age): self.name = name self.age = age def __call__(self, gender, *args, **kwargs):
原创
发布博客 2020.11.05 ·
1547 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

python中函数后有两个括号(双括号)

def test_two_parenthesis(): def add(a,b): print(a+b) return adddef main(): a = 1 b = 2 test_two_parenthesis()(a, b) if __name__ == '__main__': main()Output: 3在main()函数中出现了函数后有两个括号的情况:test_two_parenthesis()(a, b)。表示
原创
发布博客 2020.11.05 ·
7657 阅读 ·
10 点赞 ·
5 评论 ·
21 收藏

python中LabelEncoder和OneHotEncoder处理数据

在处理数据时,一些变量的值是非数值型的,如中文或者英文等,在python中,很多时候,上述的数据类型是不能带入模型的,这就需要我们进行处理。常见的处理方式有两种:Onehot Encoding:即sklearn.preprocessing中的OneHotEncoder。简单来说OneHotEncoder用于将表示分类的数据扩维:LabelEncoder:即sklearn.preprocessing中的LabelEncoder。简单来说 LabelEncoder 是对不连续的数字或者文本进行编号O
原创
发布博客 2020.11.04 ·
1060 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

ReLu及其变体如何解决非线性问题

我们知道线性方程可以做到,将一个平面划分成两个:线性函数−5−2∗x+y-5-2*x +y−5−2∗x+y将一个平面分为两部分,使用Relu后,分类边界不再是横穿x-y位置的直线。将x轴以下的部分切掉,从而得到上面右侧图中所示的角度区域。我们加入了四个relu函数,最终的输出是通过应用一个线性模型将所有这些角区域加到一起来构建的,看起来就像是平面折叠了一样。下面显示了这样一个输出决策区域的示例:现在可以想象构建一个有20 ~ 30 Relus的网络,并得到如下所示的分类边界:所以虽然ReLu
原创
发布博客 2020.07.27 ·
1388 阅读 ·
6 点赞 ·
1 评论 ·
13 收藏

机器学习中的鲁棒性

机器学习算法鲁棒性并没有严格的量化的定义。鲁棒性,robustness,顾名思义,就是健壮的意思。一个人健壮,就是小毛小病,不碍事;不健壮,就是病来如山倒。一个人健壮,就是晴天好,雨天好,冬天好,夏天好,不会突然莫名其妙地不舒服了。机器学习模型的鲁棒性主要是两个方面:小毛小病可以看作是数据中的错误点、或者误差。难免的,训练集中常常有些数据是有错位的,类似的,预测样本中也有可能有一些错误。一个具有鲁棒性的机器学习模型能够不被这些训练集中的错误数据影响,依然能绕过浮云看本质。常常训练样本和预测样
原创
发布博客 2020.07.27 ·
10972 阅读 ·
11 点赞 ·
0 评论 ·
32 收藏

交叉熵损失函数整理

文章目录一.交叉熵函数的由来(推导)二.交叉熵函数直观理解三.交叉熵函数求导3.1Sigmoid + Cross-entropy3.2SoftMax + Cross-entropy四.交叉熵与SoftMax函数一.交叉熵函数的由来(推导)我们一共有m组已知样本, (x(i),y(i))(x^{(i)},y^{(i)})(x(i),y(i))表示第i组数据及其对应的类别标记, 其中x(i)=(1,x1i,x2i,x3i…xpi)x^{(i)} = (1, x^{i}_1,x^{i}_2,x^{i}_3…x
原创
发布博客 2020.07.26 ·
4488 阅读 ·
1 点赞 ·
0 评论 ·
36 收藏

多种梯度下降变体的对比:Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent

文章目录一. 批量梯度下降(Batch gradient descent)二. 随机梯度下降法(Stochastic Gradient Descent)一. 批量梯度下降(Batch gradient descent)批量梯度下降(Batch gradient descent),是梯度下降法最常用的形式,具体做法也就是在更新参数时使用所有的样本来进行更新。θ=θ−η⋅∇θJ(θ) θ = θ − η · ∇θJ(θ) θ=θ−η⋅∇θJ(θ)由于我们需要计算整个数据集的梯度以仅执行一次更新,因此批量
原创
发布博客 2020.07.20 ·
782 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

彻底弄懂高斯模糊,均值模糊和中值模糊

文章目录一.均值模糊1.什么是均值模糊2. 数字化图片演示3. 真实图片演示4. 补充:填充方式二.中值模糊1. 什么是中值模糊2. 数字化图片演示三.高斯模糊一.均值模糊1.什么是均值模糊均值模糊就是对图像进行算术平均值模糊,比如输入的卷积核维度是3x3,那么这个卷积核就是如图所示:[191919191919191919] \left[\begin{matrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9}\\ \frac{1}{
原创
发布博客 2020.07.18 ·
5831 阅读 ·
7 点赞 ·
0 评论 ·
33 收藏

计算机视觉之浅析RGB/HSV与inRange函数

文章目录1.RGB色彩空间2.HSV色彩空间3.由RGB色彩空间转化为HSV色彩空间1.RGB色彩空间RGB色彩空间源于使用阴极射线管的彩色电视,RGB分别代表三个基色(R-红色、G-绿色、B-蓝色),具体的色彩值由三个基色叠加而成。在图像处理中,我们往往使用向量表示色彩的值,如(0,0,0)表示黑色、(255, 255, 255)表示白色。其中,255表示色彩空间被量化成255个数,最高亮度值为255(255 = 2^8 - 1,即每个色彩通道用8位表示)。在这个色彩空间中,有256256256种颜色
原创
发布博客 2020.07.17 ·
1225 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏
加载更多