2023暑期培训【week 2】——卷积神经网络

目录

1.卷积神经网络的概念及总结

        1.1 CNN的基本结构

        1.2 典型的网络结构

2.使用CNN对MNIST 数据集分类

        2.1 加载数据 (MNIST)

        2.2 创建网络

        2.3 在小型全连接网络上训练(Fully-connected network)

        2.4 在卷积神经网络上训练

        2.5 打乱像素顺序再次在两个网络上训练与测试

3.使用 CNN 对 CIFAR10 数据集分类

4.使用 VGG16 对 CIFAR10 分类

        4.1  定义 dataloader

        4.2  VGG 网络定义

        4.3  网络训练

        4.4  测试验证准确率


1.卷积神经网络的概念及总结

        1.1 CNN的基本结构

卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有网格结构数据(如图像和音频)的深度学习模型。CNN在计算机视觉领域取得了巨大成功,并广泛应用于图像分类、目标检测、图像生成等任务。

CNN的核心思想是利用卷积层池化层来提取输入数据中的空间结构特征,从而实现对图像中的物体、边缘等局部和全局信息的感知。

下面是卷积神经网络的几个主要组成部分和特点:

  1. 卷积层(Convolutional Layer):卷积层是CNN的核心组件,通过使用卷积操作在图像上滑动的一组滤波器(也称为卷积核或卷积矩阵)来提取局部特征。每个滤波器与输入图像的一个小区域进行逐元素相乘并求和,得到输出特征图。

  2. 池化层(Pooling Layer):池化层用于降低特征图的空间尺寸,并减少模型对位置变化的敏感性。常见的池化操作是最大池化(Max Pooling),它选择输入区域中的最大值作为输出,从而保留最显著的特征。

  3. 激活函数(Activation Function):CNN中的卷积层和全连接层通常在神经元输出之后应用激活函数,引入非线性特性。常用的激活函数包括ReLU、sigmoid、tanh等,用于增强模型的表示能力。

  4. 全连接层(Fully Connected Layer):在卷积层和输出层之间添加一个或多个全连接层,将卷积和池化后的特征图展平为一个向量,并将其与神经网络中的传统全连接层连接起来,用于进行最终的分类、回归等任务。

  5. 多层结构和参数共享:CNN通常由多个卷积层、激活函数、池化层和全连接层组成。参数共享是CNN的一个重要特点,即在卷积层中使用相同的权重(卷积核)来提取不同区域的特征,从而减少参数数量,提高模型的效率和泛化能力。

通过多层卷积和池化操作,CNN能够逐渐提取图像的低级特征(如边缘、纹理)到高级特征(如形状、对象),并通过全连接层进行最终的分类或回归预测。

        1.2 典型的网络结构

  1. AlexNet:AlexNet是在2012年ImageNet图像识别竞赛中取得突破性成果的卷积神经网络模型。它是首个成功应用于大规模图像数据集的深度卷积神经网络,并引入了重要的设计策略,如使用ReLU激活函数局部响应归一化(LRN)dropout。AlexNet的结构包括多个卷积层和池化层,以及全连接层,具有8个卷积层,5个池化层,3个全连接层和一个1000类的输出层。

  2. VGG:VGG是由Visual Geometry Group开发的卷积神经网络模型。VGG的主要贡献是通过使用更小尺寸的卷积滤波器(3x3)堆叠多个卷积层来提高网络性能。VGG以其深度和简单的架构结构而闻名,有16层和19层两个不同的版本。VGG在图像识别任务中取得了出色的结果,并提供了具有不同深度和复杂度的预训练模型。

  3. GoogleNet(Inception):GoogleNet,也称为Inception网络,是由Google团队提出的一种深度卷积神经网络结构。GoogleNet通过引入Inception模块,使用不同大小的卷积核和池化操作,并将它们并行连接,从而提高了网络的计算效率和表示能力。GoogleNet通过减少参数数量和计算量,使得网络更深,并在2014年的ImageNet图像识别竞赛中获得了优异的性能。

  4. ResNet:ResNet(Residual Network)是由Microsoft Research团队提出的一种深度残差网络结构。ResNet的关键思想是通过引入残差块(Residual Block)来解决深度网络中的梯度消失和退化问题。残差块通过引入跳跃连接,允许网络直接学习残差映射,从而更容易训练更深的网络。ResNet以其架构的深度和性能而闻名,成为图像分类和其他计算机视觉任务的关键模型。

2.使用CNN对MNIST 数据集分类

深度卷积神经网络中,有如下特性

  • 很多层: compositionality
  • 卷积: locality + stationarity of images
  • 池化: Invariance of object class to translations
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        2.1 加载数据 (MNIST)

PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用 torchvision.datasets 即可把这些数据由远程下载到本地,下面给出MNIST的使用方法:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

  • root 为数据集下载到本地后的根目录,包括 training.pt 和 test.pt 文件
  • train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  • download,如果设置为True, 从互联网下载数据并放到root文件夹下
  • transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。
  • target_transform 一种函数或变换,输入目标,进行变换。

另外值得注意的是,DataLoader是一个比较重要的类,提供的常用操作有:batch_size(每个batch的大小), shuffle(是否进行随机打乱顺序的操作), num_workers(加载数据的时候使用几个子进程)

 

        2.2 创建网络

定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数__init__中。

只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)。

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

定义训练和测试函数

# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))
     

        2.3 在小型全连接网络上训练(Fully-connected network)

        2.4 在卷积神经网络上训练

通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于 简单的全连接网络,是因为 CNN 能够更好的挖掘图像中的信息,主要通过两个手段:

  • 卷积:Locality and stationarity in images
  • 池化:Builds in some translation invariance

        2.5 打乱像素顺序再次在两个网络上训练与测试

考虑到CNN在卷积与池化上的优良特性,如果我们把图像中的像素打乱顺序,这样 卷积 和 池化 就难以发挥作用了,为了验证这个想法,我们把图像中的像素打乱顺序再试试。

首先下面代码展示随机打乱像素顺序后,图像的形态:

重新定义训练与测试函数,写了两个函数 train_perm 和 test_perm,分别对应着加入像素打乱顺序的训练函数与测试函数。

与之前的训练与测试函数基本上完全相同,只是对 data 加入了打乱顺序操作。

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))
     

 在全连接网络上训练与测试:

在卷积神经网络上训练与测试: 

从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是,卷积神经网络的性能明显下降。

这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

3.使用 CNN 对 CIFAR10 数据集分类

对于视觉数据,PyTorch 创建了一个叫做 totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoader。

下面将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

CIFAR10示例

首先,加载并归一化 CIFAR10 使用 torchvision 。torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
# 训练时可以打乱顺序增加多样性,测试是没有必要
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

下面展示 CIFAR10 里面的一些图片:

 

接下来定义网络,损失函数和优化器:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

 训练网络:

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

现在我们从测试集中取出8张图片:

我们把图片输入模型,看看CNN把这些图片识别成什么:

byd把船和车识别成猫猫狗狗(bushi

看看网络在整个数据集上的表现:

准确率还可以,通过改进网络结构(通过改进网络规模,优化激活函数和调整优化器策略)可以提高网络的性能。 

4.使用 VGG16 对 CIFAR10 分类

VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual Geometry Group)的缩写。

该模型参加2014年的 ImageNet图像分类与定位挑战赛,取得了优异成绩:在分类任务上排名第二,在定位任务上排名第一。

VGG16的网络结构如下图所示:

VGG16示意图

16层网络的结节信息如下:

  • 01:Convolution using 64 filters
  • 02: Convolution using 64 filters + Max pooling
  • 03: Convolution using 128 filters
  • 04: Convolution using 128 filters + Max pooling
  • 05: Convolution using 256 filters
  • 06: Convolution using 256 filters
  • 07: Convolution using 256 filters + Max pooling
  • 08: Convolution using 512 filters
  • 09: Convolution using 512 filters
  • 10: Convolution using 512 filters + Max pooling
  • 11: Convolution using 512 filters
  • 12: Convolution using 512 filters
  • 13: Convolution using 512 filters + Max pooling
  • 14: Fully connected with 4096 nodes
  • 15: Fully connected with 4096 nodes
  • 16: Softmax

 4.1. 定义 dataloader

此处对训练集的的transform操作加入了对图片的随机裁剪和概率水平翻转,以及归一化的各通道参数与之前的MNIST数据集也不相同

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

4.2 VGG网络定义

下面定义VGG网络

现在的结构基本上是:

64 conv, maxpooling,

128 conv, maxpooling,

256 conv, 256 conv, maxpooling,

512 conv, 512 conv, maxpooling,

512 conv, 512 conv, maxpooling,

softmax

下面是模型的实现代码:

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        self.features = self._make_layers(cfg)
        self.classifier = nn.Linear(2048, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

初始化网络,根据实际需要,修改分类层。因为 tiny-imagenet 是对200类图像分类,这里把输出修改为200。 


# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

4.3 网络训练


for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

4.4 测试验证准确率

 可见加入了更多卷积和池化操作的VGG网络在该数据集上的表现比CNN更好

5.问题理解

1.dataloader 里面 shuffle 取不同值有什么区别?

在 PyTorch 中的 DataLoader 中,shuffle 参数用于控制数据在每个 epoch(训练周期)中是否需要进行随机洗牌。shuffle 参数的不同取值会产生以下区别:

  1. shuffle=True(默认值):当 shuffle 参数设置为 True 时,在每个 epoch 开始之前,数据会被随机洗牌,并以随机顺序进行训练。这对于随机梯度下降(SGD)等优化算法非常重要,它有助于避免模型受到数据样本顺序的影响,并更好地泛化到其他数据上。

  2. shuffle=False:数据将按照原始顺序加载进 DataLoader,并且不进行任何洗牌。

2.transform 里,取了不同值,这个有什么区别?

ToTensor():将数据转换为张量(tensor)格式。

Normalize(mean, std):对张量进行标准化操作。这个转换会将输入的张量进行减均值除以标准差的操作,从而将数据归一化到均值为0、标准差为1的分布。mean 和 std 参数指定了每个通道的均值和标准差。

Resize(size):调整图像大小。这个转换将输入的图像调整为指定的尺寸大小,可以是一个整数或元组。

CenterCrop(size):对图像进行中心裁剪。这个转换会在图像的中心位置裁剪出指定尺寸的图像。通常用于对输入图像进行裁剪,以适应模型的输入要求。

RandomCrop(size):对图像进行随机裁剪。这个转换会在图像的随机位置裁剪出指定尺寸的图像。

RandomHorizontalFlip():随机水平翻转。这个转换会以一定的概率对图像进行水平翻转。

3.epoch 和 batch 的区别?

Epoch 是指将训练数据完整地过一遍的次数。训练一个模型通常需要通过多个 epoch 来逐渐优化模型的参数。每个 epoch,模型会遍历整个训练数据集一次,并对每个样本进行前向传播、计算损失、反向传播和参数更新。

Batch 是指在每个 epoch 中使用的数据的小批量大小。由于整个训练数据集可能非常大,无法一次性装入内存,因此我们将数据分成多个较小的批次进行处理。每个批次由多个样本组成,模型在批次中进行前向传播、计算损失、反向传播和参数更新。

4.1x1的卷积和 全连接层FC 有什么区别?主要起什么作用?

区别:

输入维度:1x1 卷积的输入是一个多通道的特征图(多维数组),而全连接层的输入是一个扁平化的特征向量(一维数组)。

参数共享:1x1 卷积可以在通道维度上共享参数,而全连接层中的每个神经元都有自己的权重参数。

空间信息:1x1 卷积在通道维度上进行卷积操作,保留输入特征图的空间信息,而全连接层丢失了空间信息。

作用:

1x1 卷积主要用于调整特征图的维度实现特征融合和降维,而全连接层则用于最终的分类或回归任务。在某些情况下,1x1 卷积可以替代全连接层,以减少参数量和计算量,并提高模型的效率和泛化能力。

5.residual leanring 为什么能够提升准确率?

残差学习通过引入跳跃连接(skip connection)的方式来提升准确率。它的核心思想是通过学习残差来建立模型,使其更容易拟合输入和目标之间的差异。在传统的深度卷积神经网络中,每个层都通过非线性激活函数处理输入,然后输出到下一层。然而,当网络变得非常深时,可能会面临梯度消失或梯度爆炸等问题,残差学习通过在网络中添加跳跃连接来解决这个问题。跳跃连接将输入的特征图直接与后续层的输出相加,形成一个"快捷路径",可以绕过一些卷积层或全连接层。通过残差学习,网络可以很容易地学习到输入和目标之间的残差。即使在网络的深层,也能保持更加稳定的梯度传播,从而更有效地优化模型。

6.代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

代码练习2中使用的池化MaxPool2d,激活函数ReLu; LeNet中使用的池化AdaptiveAvgPool2d激活函数Sigmoid

7.代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?

采用1*1的卷积对大小不同的feature map进行调整。

8.有什么方法可以进一步提升准确率?(参考学长博客)

  • 设置合适的学习率或者选择合适的优化器

  • 选择合适的激活函数

  • 选择合适的损失函数

  • 正则化以防止过拟合

  • 优化网络规模,选择合适的深度和宽度

  • 对数据集合适的预处理也可以防止过拟合

  • 适当延长训练时间防止欠拟合

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值