逻辑回归:从极大似然估计角度推导损失函数

1. 逻辑回归的概率表示(Sigmoid函数)

y=\frac1{1+e^{-(w^T\cdot x+b)}}

其中 w 和 b 是我们需要找到的模型参数。

2. 构建似然项

对于二分类问题,我们希望将 P(y|x;w) 表达成一个通用形式,它可以处理 y=1 和 y=0 两种情况。这可以通过将 P(y|x) 写为:

P(y|x;w)=(P_1(x;w))^y(1-P_1(x;w))^{(1-y)}

那么第 i 个样本点的似然项为:

P(y_i|x_i;w)=P_1(x_i;w)^{y_i}(1-P_1)(x_i;w)^{(1-y_i)}

这个公式表示在参数 w0 和 w1 给定的情况下,观测到数据 yi 的概率。

3. 构建似然函数

通用的表达形式:

L(w)=\prod_{i=1}^n(P_1(x_i;w))^{y_i}(1-P_1(x_i;w))^{(1-y_i)}

这里,n 是样本的数量。这个公式表示了在给定的模型参数下,得到观测数据的概率。

(1)两边取对数:

\ln L(w)=\ln\prod_{i=1}^n(P_1(x_i;w))^{y_i}(1-P_1(x_i;w))^{(1-y_i)}

(2)将乘积转换为求和:

\ln L(w)=\sum_{i=1}^n\ln\left((P_1(x_i;w))^{y_i}(1-P_1(x_i;w))^{(1-y_i)}\right)

(3)将幂运算转换为乘法:

\ln L(w)=\sum_{i=1}^n\left[y_i\ln(P_1(x_i;w))+(1-y_i)\ln(1-P_1(x_i;w))\right]

至此,我们从原始的似然函数得到了对数似然函数,这个对数似然函数的形式就是我们常说的交叉熵损失函数(Cross-Entropy Loss Function)。在实际的优化过程中,我们通常需要将问题转化为最小化问题。因此,我们将对数似然函数取负,得到负对数似然函数,即:

L_{loss}(w)=-\sum_{i=1}^n\left[y_i\ln(P_1(x_i;w))+(1-y_i)\ln(1-P_1(x_i;w))\right]

我们的目标就是寻找一组参数使得这个负对数似然函数(也就是损失函数)最小。

4. 极大似然估计

极大似然估计(Maximum Likelihood Estimation, MLE)是一种基于概率统计的参数估计方法。它的基本思想是:在已知某个参数能使得数据出现的概率最大的情况下,我们就可以认为这个参数就是最优参数。

换句话说,给定一个模型和一组观测数据,我们可以计算出在不同参数值下得到这组数据的概率。这个概率被称为似然函数。我们的目标就是找到使得这个概率(即似然函数)最大的参数值,这个参数值就是极大似然估计的结果。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逻辑回归是一种广泛应用于分类问题的机器学习算法,它的基本思想是通过拟合一个逻辑函数来预测样本的类别概率。而逻辑回归中的参数估计常使用极大似然估计。 对于二分类问题,我们假设样本的类别标签为0或1。逻辑回归模型的假设函数可以表示为: hθ(x) = g(θ^T * x) 其中,hθ(x) 是预测类别为1的概率,g(z) 是逻辑函数(也称为 sigmoid 函数),定义为 g(z) = 1 / (1 + e^(-z))。 我们希望通过最大化似然函数来估计模型参数 θ。假设我们有 m 个训练样本 {(x^(1), y^(1)), (x^(2), y^(2)), ..., (x^(m), y^(m))},其中 x 是输入特征向量,y 是对应的类别标签。 对于单个样本 (x, y),其生成的似然函数为: L(θ) = hθ(x)^y * (1 - hθ(x))^(1-y) 我们可以将所有样本的似然函数连乘起来,得到整体的似然函数: L(θ) = Π(hθ(x^(i))^y^(i) * (1 - hθ(x^(i)))^(1-y^(i))) 接下来,我们需要求解使得似然函数最大化的参数 θ。由于连乘的计算不方便,我们通常会取对数似然函数,即对上述似然函数取对数: l(θ) = log L(θ) = Σ(y^(i)log(hθ(x^(i))) + (1-y^(i))log(1 - hθ(x^(i)))) 最大化对数似然函数等价于最小化其负值,即最小化损失函数: J(θ) = -l(θ) = -Σ(y^(i)log(hθ(x^(i))) + (1-y^(i))log(1 - hθ(x^(i)))) 我们可以使用梯度下降等优化算法来最小化损失函数,从而得到最优的参数估计值 θ。 以上是逻辑回归极大似然估计的简要推导过程。在实际应用中,常常使用数值计算库来自动完成参数估计过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值