题目传送门:154.滑动窗口
给定一个大小为 n≤1e6 的数组。
有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。
你只能在窗口中看到 k 个数字。
每次滑动窗口向右移动一个位置。
以下是一个例子:
该数组为
[1 3 -1 -3 5 3 6 7]
,k 为 3。
窗口位置 最小值 最大值 [1 3 -1] -3 5 3 6 7 -1 3 1 [3 -1 -3] 5 3 6 7 -3 3 1 3 [-1 -3 5] 3 6 7 -3 5 1 3 -1 [-3 5 3] 6 7 -3 5 1 3 -1 -3 [5 3 6] 7 3 6 1 3 -1 -3 5 [3 6 7] 3 7 你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。
输入格式
输入包含两行。
第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。
第二行有 n 个整数,代表数组的具体数值。
同行数据之间用空格隔开。
输出格式
输出包含两个。
第一行输出,从左至右,每个位置滑动窗口中的最小值。
第二行输出,从左至右,每个位置滑动窗口中的最大值。
输入样例:
8 3 1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3 3 3 5 5 6 7
试题解析:
首先来解释题意:从下标为1的数组开始遍历,等到遍历到第k个元素,窗口形成。
我们要找到每个窗口内的元素的最值,如果使用朴素暴力解法,那么时间复杂度是O(n*k)的,我们使用一个队列q来保存每一个窗口最值的下标。
方法解析:
以求滑动窗口最小值为例:
- 如果当前滑动窗口存在下标i<j,且num[i] >= num[j],那么当i在窗口时,j一定在窗口。但由于我们要求的是最小值,我们可知,由于num[j]的存在,num[i]一定不会是最小值了,在这种情况下,我们可以将其永久移除。
- 我们使用队列来存储所有没有被移除的下标,下标从小到大存储,且其在num数组对应的值为单调递增的(要求最小的数,那么如果前面的数大,则不会被使用,可以被删除)
- 当滑动窗口向右移动时,要将新的元素入队。
为了保证队列的单调性,我们使新元素与队尾元素进行比较,如果新元素小于队尾元素,队尾元素则会被弹出队列,永久移除。在队列有元素的条件下,我们持续进行此操作,直至队列为空或者新元素大于等于队尾元素。 - 由于队列中下标所对应的num中的元素为单调递增,单调队列的队首所对应的元素即为窗口内的最小元素。
- 本题的下标从1开始,当下标>=k时,则窗口形成,可以输出窗口最值。
- 注意:在窗口向右移动的时候,我们要确保队首所对应的元素是在窗口中的,通过判断,如果队首元素在窗口左边时,弹出队头。
代码如下:
#include<iostream>
#include<deque>
using namespace std;
constexpr int N = 1000010;
int num[N];
int main() {
int n, k;
deque<int> q;
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%d", &num[i]);
}
for (int i = 1; i <= n; i++) {
while (q.size() && q.back() > num[i]) q.pop_back();//弹出队尾
q.push_back(num[i]);
//弹出对应元素不在窗口的队首
if (i - k >= 1 && q.front() == num[i - k]) q.pop_front();
if (i >= k) cout << q.front() << " ";
}
q.clear();
cout << endl;
for (int i = 1; i <= n; i++) {
while (q.size() && q.back() < num[i]) q.pop_back();//弹出队尾
q.push_back(num[i]);
//弹出对应元素不在窗口的队首
if (i - k >= 1 && q.front() == num[i - k]) q.pop_front();
if (i >= k) cout << q.front() << " ";
}
cout << endl;
return 0;
}