寒假冬令营(算法编程)1月6日(枚举)

题目描述(1)

204. 计数质数

. - 力扣(LeetCode)

给定整数 n ,返回 所有小于非负整数 n 的质数的数量

示例 1:

输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:

输入:n = 0
输出:0

示例 3:

输入:n = 1
输出:0

提示:

  • 0 <= n <= 5 * 10^6

相关知识点

埃拉托斯特尼筛法(Sieve of Eratosthenes)是一种古老且高效的算法,用于找出一定范围内所有的质数。其基本思想是从小到大遍历每个数,将其所有的倍数标记为非质数,以便排除非质数。这个算法的效率较高,其时间复杂度为 O(n log log n)。

下面是埃拉托斯特尼筛法的步骤:

1. 初始化数组:创建一个布尔数组,表示从 2 到 n 的所有数字。初始时,将所有元素都标记为质数(true)。

2. 从小到大遍历:从 2 开始,找到第一个未被标记为非质数的数字,将其标记为质数。

3. 标记倍数:对于该质数的所有倍数,将它们标记为非质数。

4. 重复步骤2和3:重复上述步骤,直到遍历完所有小于 n 的数字。

5. 输出结果:最终未被标记为非质数的数字即为所有小于 n 的质数。

这个算法的优点在于它的简洁性和高效性。通过一次遍历,可以排除大部分的非质数,使得后续的判断变得更加迅速。在代码实现中,常常使用一个布尔数组来记录每个数字是否为质数,从而提高算法的执行效率。

解题结果

Java

使用埃拉托斯特尼筛法(Sieve of Eratosthenes)来解决这个问题。

1. 初始化布尔数组: 创建一个布尔数组 `isPrime`,其长度为 `n`,用于标记每个数字是否为质数。初始时,将所有元素都设为 `true`,表示所有数字都是质数。

   boolean[] isPrime = new boolean[n];
   for (int i = 2; i < n; i++) {
       isPrime[i] = true;
   }

2. 埃拉托斯特尼筛法:从 2 开始,遍历到 `sqrt(n)`,如果当前数字是质数(在 `isPrime` 中标记为 `true`),则将其所有倍数标记为非质数(在 `isPrime` 中标记为 `false`)。

   for (int i = 2; i * i < n; i++) {
       if (isPrime[i]) {
           for (int j = i * i; j < n; j += i) {
               isPrime[j] = false;
           }
       }
   }

   这一步的目的是排除所有的非质数,优化算法的时间复杂度。

3. 统计质数数量: 遍历数组 `isPrime`,统计标记为质数的数量。

 int count = 0;
   for (int i = 2; i < n; i++) {
       if (isPrime[i]) {
           count++;
       }
   }

4. 返回结果:返回统计得到的质数数量。

   return count;

这样,通过埃拉托斯特尼筛法,我们能够高效地找出小于给定整数 `n` 的所有质数,并返回它们的数量。完整代码如下:

class Solution {
    public int countPrimes(int n) {
        if (n <= 2) {
            return 0;
        }
​
        boolean[] isPrime = new boolean[n];
        // 初始化为 true,表示所有数字都是质数
        for (int i = 2; i < n; i++) {
            isPrime[i] = true;
        }
​
        // 使用埃拉托斯特尼筛法,将非质数标记为 false
        for (int i = 2; i * i < n; i++) {
            if (isPrime[i]) {
                for (int j = i * i; j < n; j += i) {
                    isPrime[j] = false;
                }
            }
        }
​
        // 统计质数的数量
        int count = 0;
        for (int i = 2; i < n; i++) {
            if (isPrime[i]) {
                count++;
            }
        }
​
        return count;
    }
}

题目描述(2)

1. 两数之和

. - 力扣(LeetCode)

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

提示:

  • 2 <= nums.length <= 104

  • -109 <= nums[i] <= 109

  • -109 <= target <= 109

  • 只会存在一个有效答案

解题结果

Java

class Solution {
    public int[] twoSum(int[] nums, int target) {
        int l = nums.length;
        Map<Integer, Integer>map = new HashMap<>();
        for(int i=0;i<l;i++){
            if(map.containsKey(target - nums[i])){
                return new int[] {map.get(target-nums[i]),i};
            }
            map.put(nums[i],i);
        }
        throw new IllegalArgumentException("no");
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pedestrians74

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值