题目描述(1)
204. 计数质数
给定整数 n
,返回 所有小于非负整数 n
的质数的数量 。
示例 1:
输入:n = 10 输出:4 解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0 输出:0
示例 3:
输入:n = 1 输出:0
提示:
-
0 <= n <= 5 * 10^6
相关知识点
埃拉托斯特尼筛法(Sieve of Eratosthenes)是一种古老且高效的算法,用于找出一定范围内所有的质数。其基本思想是从小到大遍历每个数,将其所有的倍数标记为非质数,以便排除非质数。这个算法的效率较高,其时间复杂度为 O(n log log n)。
下面是埃拉托斯特尼筛法的步骤:
1. 初始化数组:创建一个布尔数组,表示从 2 到 n 的所有数字。初始时,将所有元素都标记为质数(true)。
2. 从小到大遍历:从 2 开始,找到第一个未被标记为非质数的数字,将其标记为质数。
3. 标记倍数:对于该质数的所有倍数,将它们标记为非质数。
4. 重复步骤2和3:重复上述步骤,直到遍历完所有小于 n 的数字。
5. 输出结果:最终未被标记为非质数的数字即为所有小于 n 的质数。
这个算法的优点在于它的简洁性和高效性。通过一次遍历,可以排除大部分的非质数,使得后续的判断变得更加迅速。在代码实现中,常常使用一个布尔数组来记录每个数字是否为质数,从而提高算法的执行效率。
解题结果
Java
使用埃拉托斯特尼筛法(Sieve of Eratosthenes)来解决这个问题。
1. 初始化布尔数组: 创建一个布尔数组 `isPrime`,其长度为 `n`,用于标记每个数字是否为质数。初始时,将所有元素都设为 `true`,表示所有数字都是质数。
boolean[] isPrime = new boolean[n];
for (int i = 2; i < n; i++) {
isPrime[i] = true;
}
2. 埃拉托斯特尼筛法:从 2 开始,遍历到 `sqrt(n)`,如果当前数字是质数(在 `isPrime` 中标记为 `true`),则将其所有倍数标记为非质数(在 `isPrime` 中标记为 `false`)。
for (int i = 2; i * i < n; i++) {
if (isPrime[i]) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = false;
}
}
}
这一步的目的是排除所有的非质数,优化算法的时间复杂度。
3. 统计质数数量: 遍历数组 `isPrime`,统计标记为质数的数量。
int count = 0;
for (int i = 2; i < n; i++) {
if (isPrime[i]) {
count++;
}
}
4. 返回结果:返回统计得到的质数数量。
return count;
这样,通过埃拉托斯特尼筛法,我们能够高效地找出小于给定整数 `n` 的所有质数,并返回它们的数量。完整代码如下:
class Solution {
public int countPrimes(int n) {
if (n <= 2) {
return 0;
}
boolean[] isPrime = new boolean[n];
// 初始化为 true,表示所有数字都是质数
for (int i = 2; i < n; i++) {
isPrime[i] = true;
}
// 使用埃拉托斯特尼筛法,将非质数标记为 false
for (int i = 2; i * i < n; i++) {
if (isPrime[i]) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = false;
}
}
}
// 统计质数的数量
int count = 0;
for (int i = 2; i < n; i++) {
if (isPrime[i]) {
count++;
}
}
return count;
}
}
题目描述(2)
1. 两数之和
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出 和为目标值 target
的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6 输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6 输出:[0,1]
提示:
-
2 <= nums.length <= 104
-
-109 <= nums[i] <= 109
-
-109 <= target <= 109
-
只会存在一个有效答案
解题结果
Java
class Solution {
public int[] twoSum(int[] nums, int target) {
int l = nums.length;
Map<Integer, Integer>map = new HashMap<>();
for(int i=0;i<l;i++){
if(map.containsKey(target - nums[i])){
return new int[] {map.get(target-nums[i]),i};
}
map.put(nums[i],i);
}
throw new IllegalArgumentException("no");
}
}