Dijkstra求最短路

文章提供了一个Dijkstra算法的C++实现,用于在图中寻找从起点到终点的最短路径。代码首先使用优先队列优化,并通过邻接表代替了原来的vector来提高效率。当找到目标节点时,输出最短距离;若无法到达,则输出-1。
摘要由CSDN通过智能技术生成

直接上例题:

原题链接(849. Dijkstra求最短路 I - AcWing题库

ac代码:

#include <iostream>
#include <cstring>
#include <vector>
#include <utility>
#include <queue>
using namespace std;
const int V = 505;
typedef pair<int, int> PII;
vector<PII>rod[V];
int dis[V];//存储到该点的最短距离
bool vis[V];//用于标记是否已经找过该点
void dijk(int k)//k为起点
{
	priority_queue<PII, vector<PII>, greater<PII> >que;//优先队列实现堆
	memset(dis, 0x3f, sizeof(dis));//遍历之前保证所有点距离都很大
	memset(vis, 0, sizeof(vis));//重置标记
	dis[k] = 0;//到起点距离一定是0
	que.push({ 0,k });//优先队列是pair类型,优先排first,避免写多余的函数所有把距离写前面,后面是点
	while (que.size()) {
		int tmp = que.top().second;//获得该点,至于first一定是当前最小的
		que.pop();//已经得到点,出队
		if (vis[tmp]) continue;//该点被标记过,跳过
		vis[tmp] = 1;//没被标记的进行标记
		for (int i = 0; i < rod[tmp].size(); i++) {//循环从队列取出的当前点距离其他点的距离
			if (dis[rod[tmp][i].first] > (rod[tmp][i].second + dis[tmp])) {//当前点到点i的距离可被更新(更短)
				dis[rod[tmp][i].first] = rod[tmp][i].second + dis[tmp];//进行更新
				que.push({ dis[rod[tmp][i].first],rod[tmp][i].first });//将可以更新的点入队,rod[tmp][i]表示第i个点
			}
		}
	}
}
int main()
{
	int n, m;
	int a, b, c;
	cin >> n >> m;
	for (int i = 1; i <= m; i++) {
		cin >> a >> b >> c;
		rod[a].push_back({ b,c });
	}
	dijk(1);
	if (dis[n] == 0x3f3f3f3f) dis[n] = -1;
	cout << dis[n] << endl;
	return 0;
}

可恶啊,vector不一定对,所以改板子吧

修改后的ac代码:(大体没变,只不过不用vector模拟实现)

#include <iostream>
#include <cstring>
#include <vector>
#include <utility>
#include <queue>
using namespace std;
const int N = 1e6 + 10;
typedef pair<int, int> PII;
int e[N], v[N], h[N], ne[N], cnt;
int dis[N];
bool vis[N];
int n, m, z;
void add(int a, int b, int c)
{
	v[++cnt] = b, e[cnt] = c, ne[cnt] = h[a], h[a] = cnt;
}
void dijk(int s)
{
	priority_queue<PII, vector<PII>, greater<PII> >que;
	memset(dis, 0x3f, sizeof(dis));
	memset(vis, 0, sizeof(vis));
	dis[s] = 0;
	que.push({ 0,s });
	while (que.size()) {
		int tmp = que.top().second;
		que.pop();
		if (vis[tmp]) continue;
		vis[tmp] = 1;
		for (int i = h[tmp]; i; i = ne[i]) {
			if (dis[v[i]] > e[i] + dis[tmp]) {
				dis[v[i]] = e[i] + dis[tmp];
				que.push({ dis[v[i]],v[i] });
			}
		}
	}
}
int main()
{
	ios::sync_with_stdio(false);
	while (cin >> n >> m) {
		if (n == 0 && m == 0) break;
		cnt = 0;
		memset(e, 0, sizeof(e));
		memset(v, 0, sizeof(v));
		memset(h, 0, sizeof(h));
		memset(ne, 0, sizeof(ne));
		for (int i = 1; i <= m; i++) {
			int a, b, z;
			cin >> a >> b >> z;
			add(a, b, z);
			//add(b, a, z);
		}
		dijk(1);
		if(dis[n]==0x3f3f3f3f) cout<<"-1"<<endl;
		else cout << dis[n] << endl;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值