【多变量输入超前多步预测】基于CNN的光伏功率预测研究(Matlab代码实现)

                                        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、CNN在光伏功率预测中的应用

三、多变量输入与超前多步预测

四、研究挑战与展望

五、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

关于【多变量输入超前多步预测】基于CNN的光伏功率预测研究,虽然直接结合CNN与超前多步预测的研究可能较少单独提及GRU或BiGRU等循环神经网络组件,但我们可以基于CNN在特征提取方面的优势,探讨其在多变量输入光伏功率预测中的应用,并结合超前多步预测的需求进行分析。

一、研究背景与意义

光伏功率预测对于电力系统的调度、运行和维护具有重要意义。由于光伏功率受多种因素影响(如光照强度、温度、风速等),因此采用多变量输入进行预测能够提高预测的准确性。同时,超前多步预测能够帮助电力系统更好地规划未来的发电和用电需求,确保电网的稳定运行。

二、CNN在光伏功率预测中的应用

1. 特征提取能力
CNN通过卷积层和池化层能够从输入数据中自动提取有用的特征。在光伏功率预测中,CNN能够处理多变量输入数据(如光照强度、温度、风速等时间序列),提取出对预测有用的局部和全局特征。

2. 适应时间序列数据
虽然CNN最初是为图像处理而设计的,但通过适当调整网络结构和输入数据的格式,CNN也可以有效处理时间序列数据。例如,可以将时间序列数据视为一种特殊的一维图像,利用CNN进行特征提取。

三、多变量输入与超前多步预测

1. 多变量输入
多变量输入是指将多个影响光伏功率的因素作为输入变量进行预测。这些因素可能包括光照强度、温度、风速、风向、湿度、大气压等气象因素,以及历史功率数据等。通过引入多变量输入,模型能够更全面地捕捉光伏功率输出的影响因素,从而提高预测的准确性和鲁棒性。

2. 超前多步预测
超前多步预测是指在当前时间点预测未来多个时间点的光伏功率输出。这要求模型不仅具有强大的特征提取能力,还需要能够捕捉时间序列数据中的长期依赖关系。虽然CNN本身更擅长特征提取而非时序建模,但可以通过与其他模型(如LSTM、GRU等)结合使用,或者采用特殊的CNN结构(如时间卷积网络TCN)来实现超前多步预测。

四、研究挑战与展望

1. 数据质量与预处理
高质量的数据是训练准确模型的基础。在实际应用中,数据往往存在噪声、缺失等问题,需要进行有效的数据预处理和特征选择。此外,由于不同来源的数据可能存在尺度差异,因此还需要进行数据归一化处理。

2. 模型复杂度与计算资源
基于CNN的光伏功率预测模型可能具有较高的复杂度,对计算资源的要求也较高。在实际应用中,需要根据具体情况选择合适的模型规模和训练策略,以平衡预测准确性与计算资源消耗之间的关系。

3. 预测不确定性与综合判断
由于光伏功率输出受到多种不确定因素的影响(如天气突变等),因此预测结果仍存在一定的不确定性。在实际应用中,需要结合其他信息来源和专家经验来综合判断预测结果的可靠性,并制定相应的应对措施。

五、结论

基于CNN的多变量输入超前多步光伏功率预测研究是一个具有挑战性和前景的领域。通过充分利用CNN在特征提取方面的优势,并结合其他模型或特殊结构来处理时间序列数据中的长期依赖关系,可以实现更准确、更稳定的光伏功率预测。未来随着技术的不断进步和数据质量的提升,相信这一研究领域将取得更加丰硕的成果。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]史凯钰,张东霞,韩肖清,等.基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J].电网技术, 2022(004):046.DOI:10.13335/j.1000-3673.pst.2021.0738.

[2]吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制, 2020, 48(7):8.DOI:CNKI:SUN:JDQW.0.2020-07-006.

[3]刘兴霖,黄超,王龙,等.基于聚类和LSTM的光伏功率日前逐时鲁棒预测[J].计算机技术与发展, 2023, 33(3):120-126.DOI:10.3969/j.issn.1673-629X.2023.03.018.

[4]王东风,刘婧,黄宇,等.结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J].太阳能学报, 2024, 45(2):443-450.DOI:10.19912/j.0254-0096.tynxb.2022-1542.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随着深度学习技术的发展,卷积神经网络 (CNN) 和长短时记忆网络 (LSTM) 已成为多变量多步预测领域中最为常用的网络结构之一。 首先, CNN 可以有效的提取时空数据中的特征。通过在卷积层中使用滤波器,我们可以捕捉到不同时间和空间尺度上的信号模式。因此,可以将输入的多个变量作为不同信号的不同通道,通过 CNN 来获取它们之间的相关关系。在使用 CNN 网络的过程中,可以针对不同的问题场景来更改不同的模型结构,例如卷积层数量、卷积核数量和大小等等。 其次, 将 CNN 的特征作为 LSTM 的输入,可以更好地学习序列数据中的依赖关系。 LSTM 模型可以更好地处理序列中的长期依赖关系,避免了过度依赖前面的数据的问题,并且可以自适应地选择需要记忆还是需要遗忘的信息。因此,LSTM能够非常成功地解决多变量多步预测中的长时间序列依赖问题。同时,还可以使用多层 LSTM 结构进行模型的深度学习。 最后,为了得到更好的多步预测结果,还可以使用残差网络 (ResNet) 来解决训练过程中梯度消失和梯度爆炸的问题。ResNet 允许模型立即掌握残差(预测误差)以便在预测过程中更好地考虑残差和历史数据之间的关系。 总的来说,使用 CNN-LSTM 模型可以较好的预测变量多步的时空序列数据,并且在真实数据集上的性能也得到了很好的验证。当然,在使用该模型时,还需要根据具体应用设置一些超参数,例如滤波器的核大小、时间步长等级。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值