💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
概率最小均方自适应滤波器是一种在信号处理领域广泛应用的重要工具。 这种滤波器旨在通过自适应的方式对输入信号进行滤波处理,以实现特定的目标,如信号增强、噪声去除、系统辨识等。它基于概率最小均方准则进行设计和优化。 在工作过程中,概率最小均方自适应滤波器不断根据输入信号的统计特性和期望输出进行调整。它能够自动适应信号的变化和环境的动态性,无需事先知道信号的精确模型。通过不断地更新滤波器的系数,使其逐渐逼近最优解,以实现对输入信号的最佳滤波效果。 该滤波器具有许多优点。首先,它具有自适应性,能够在信号和环境变化时实时调整,保持良好的性能。其次,它可以处理非平稳信号,适应不同的应用场景。此外,它的计算复杂度相对较低,便于实时实现。 概率最小均方自适应滤波器在通信、音频处理、图像处理、雷达等众多领域都有广泛的应用。例如,在通信系统中,可用于信道均衡、干扰抑制;在音频处理中,可用于降噪、回声消除等。 总之,概率最小均方自适应滤波器以其自适应性、高效性和广泛的适用性,在信号处理领域发挥着重要的作用。
📚2 运行结果
主函数部分代码:
clc;clear;
close all
%% plot setting
clr1 = {'r','g','b'};
clr2 = {'r--','g--','b--'};
leg = [];
Fig1 = figure;
%% Initialization
N = 1;
M = 4; % Number of unknown parameters or Optimal Weight Vector Length
observations = 1000; % Number of time observation
LMSiterations = observations; % Number of LMS Iteration
experiments = 100; % Number of experiments for averaging over on.
Wo = ones(M,1)*sqrt(M); % Optimal Weight Vector
stationary = 1; % Choose 1 for stationary model, 0 for non-stationary model
N0 = .5; % Input noise variance
i = 1;
leg=[];
Xbar = [];
ix = 1:observations;
zinp = [];
for N1 = [.12 .38 1.3 ] %output noise variance
display(strcat('N1= ', num2str(N1),'...'))
for experiment = 1 : experiments
%% Generate Input Signal and Desired Output
inputNoise = 'none';
outputNoise = 'gaussian';
N0 = N1;
[X,d,w,zinp,zout,snr_inp] = createData(Wo,N,M,observations,N0,N1,stationary,inputNoise,outputNoise);
snr_out = 10*log10(var(d-zout)/var(zout));
%% PLMS Adaption
muN =0.1; % Step size
bufferL = 30; % Buffer length
[MSD(experiment,:),W,er(experiment,:)] = PLMS(X,d,LMSiterations,N,M,w,muN,bufferL);
%% Performance Analysis of PLMS
for j = 1 : observations
nrmW(j) = norm(W(:,j)-Wo);
end
p = 1;
for j = observations:-1:bufferL+1
b(p) = sum(nrmW(j-bufferL:j-1))/nrmW(j);
b(p) = b(p);
p = p +1;
end
beta = mean(b);
R = corr(reshape(X(1,:,:),M,observations)');
I = eye(M);
I2 = kron(I,I);
f = I2-kron(I,muN*(I+R))-kron(muN*(I+R),I);
q1 = muN*beta/bufferL;
MSDT(experiment) = muN^2*N1^2*R(:)'*inv(I2-f-q1*I2)*I(:);%MSD Theory
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈辉,王秋菊,连峰,等.正态-伽马非线性雷达扩展目标跟踪滤波器[J/OL].控制理论与应用:1-9[2024-09-02].http://kns.cnki.net/kcms/detail/44.1240.TP.20240830.1253.010.html.
[2]廖莎莎,樊星辰,刘真伟.超小尺寸硅基矩形滤波器[J/OL].光学学报:1-16[2024-09-02].http://kns.cnki.net/kcms/detail/31.1252.O4.20240828.1410.050.html.