储能辅助火电机组二次调频控制策略及容量优化配置研究(Matlab代码和Simulink仿真)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、研究内容与方法

三、研究结果与讨论

四、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Simulink仿真、Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

随着全球能源的日益紧张,气候变暖、环境污染问题已引起世界各国的广泛重视(1]。在全球范围内开发和利用清洁能源,减少化石能源的使用,逐步向以清洁能源为主的能源结构转型的理念得到了国内外的广泛认可?,我国提出“2050年非化石能源占一次能源消费比重50%以上”的能源战略目标[3]。但是以风能、太阳能为主的清洁能源随机性与间歇性较强,且难以预测,当其大规模并网后会对电网的频率稳定带来显著影响,而其本身往往不具备调频能力,从而加重了整个电网的调频负担4。因此,如何在清洁能源不断提高并网占比的情况下保持电网的频率稳定已成为当前热点研究问题。
我国电力系统的调频任务主要由火电燃煤机组来承担,但大量的运行经验表明,火电机组在参与调频过程中,机组自身爬坡率低、响应速度慢,在跟踪调频指令的过程中表现吃力7,从而不能保证频率控制的精度要求。另外,传统火电机组在进行调频任务时也会对机组的经济性和稳定性带来一些不利影响,这是因为传统火电机组调频时频繁增减出力增加了机组的磨损,同时会使排放物排放量很难得到控制,可能会出现不达标的现象,污染环境;火电机组出力变化会影响燃烧炉内的稳定运行,降低安全性!。由此可见,随
着清洁能源渗透率的不断增加,电力系统调频只有火电机组这一种调频电源参与时,在经济性、调频容量等方面已难以满足要求,需要挖掘出一种新的调频资源来解决频率调节稳定性问题。
与此同时,锂电池、飞轮储能、超级电容等新型储能技术发展迅猛,且控制技术已较为成熟,作为参与电力系统频率调节的新元素,其辅助传统火电机组参与电网调频较火电机组单独调频时的优势在于:第一是响应速度快,可以很好地弥补传统火电机组响应滞后、爬坡速率低的固有缺陷;第二是可以精确出力,实时跟踪自动发电控制(Automaticgeneration control,AGC)指令使得在调频效果上得到有效提高;第三是可以双向调节,有效抑制了火电机组在调频时因出力滞后可能出现的反向调节现象。
但目前储能作为一种优质的调频资源,其积极性尚未被激活,且已经建成的一-些各种类型储能系统,其参与频率调节的能力未得到充分重视,因此,对储能辅助火电机组参与频率调节的控制策略及容量配置展开研究尤为必要,对其调频能力以及经济性展开分析,以更好的引导储能系统在我国调频市场中的推广应用,同时提高电网对清洁能源的接纳能力,此研究对促进储能系统参与电力系统辅助服务市场发展具有重大意义。

储能辅助火电机组二次调频控制策略及容量优化配置是当前电力系统研究的重要课题之一,其核心目标是通过优化配置储能系统,提升火电机组在电网中的调频能力,确保电力系统的稳定运行。以下是关于这一课题的总体研究思路和关键内容:

1. 基础概念
- **二次调频(AGC,Automatic Generation Control)**:指电力系统中,通过自动调节发电机组出力,使系统频率维持在预定值的调节过程。二次调频主要负责解决系统的中长期频率偏差问题。
- **储能系统**:用于存储电能并在需要时释放,以平衡发电和负荷之间的短期频率偏差。

2. 储能系统在火电机组中的作用
- **提升调频响应速度**:储能系统可以迅速响应频率偏差,弥补火电机组由于机械惯性导致的响应迟滞。
- **稳定输出功率**:储能系统可以平滑火电机组的输出功率,减少频繁启停对机组的冲击,延长设备寿命。

3. 控制策略研究
- **联合控制策略**:设计综合的控制策略,使得储能系统和火电机组协同工作。具体包括频率控制、功率控制和状态估计等。
  - **频率控制**:储能系统根据频率偏差快速调节功率输出,进行初步频率调整。
  - **功率控制**:根据系统需求和火电机组的运行状态,合理分配火电机组和储能系统的功率输出。
  - **状态估计**:实时监测并预计储能系统和火电机组的运行状态,以最优策略进行调节。

4. 容量优化配置
- **研究方法**:使用仿真和优化算法,对火电机组与储能系统的协同运行进行模拟和分析。
  - **仿真方法**:建立火电机组和储能系统的数学模型,通过仿真软件(如MATLAB/Simulink)进行联合调度仿真。
  - **优化算法**:采用遗传算法、粒子群优化算法等优化方法,确定储能系统的最优容量配置。
- **影响因素**:
  - **负荷特性**:根据电网负荷的波动特性,确定储能系统的容量需求。
  - **机组特性**:火电机组的调节能力、响应速度等性能指标。
  - **经济性分析**:考虑系统的建设及运行成本,对储能系统的容量配置进行经济效益评估。

5. 实例分析及验证
- **案例研究**:选择实际电网系统,进行实例分析,验证控制策略和优化配置方案的有效性。
  - **效果评估**:通过仿真和实际数据对比,评估储能系统辅助火电机组二次调频的效果,如频率稳定性、调节速度和稳定成本等指标。

一、研究背景与意义

随着全球能源结构的转型和可再生能源的大规模并网,电力系统的稳定性和可靠性面临严峻挑战。传统火电机组在调频过程中存在爬坡率低、响应速度慢等问题,难以满足现代电力系统的调频需求。而储能技术因其快速响应、精确跟踪和可双向调节等特性,被视为最具发展前景的辅助调频手段。因此,开展储能辅助火电机组二次调频控制策略及容量优化配置研究,对于提高电力系统的稳定性和经济性具有重要意义。

二、研究内容与方法

  1. 二次调频原理与模型建立

    • 分析电力系统调频原理,建立包括火电机组调速器、汽轮机和发电机在内的区域电网调频模型。
  2. 储能技术选型与建模

    • 对不同类型储能的技术性指标和经济性指标进行权重分配并计算最终评分,确定选择锂电池(或其他类型储能,如飞轮储能)作为参与调频的储能类型。
    • 研究目前常用的储能模型,提出基于电池储能单体的储能调频新模型。
  3. 储能辅助二次调频控制策略

    • 构建一种基于调频需求灵活切换控制方式的储能电池参与二次调频控制策略。
    • 将储能划分为调频和恢复两种工况,根据调频需求和储能荷电状态(SOC)进行状态区间划分,确定两种控制方式的切换时机与自适应出力深度大小。
  4. 容量优化配置方法

    • 提出一种基于变分模态分解(VMD)经济性最优的储能电池参与二次调频的容量配置方法。
    • 利用变分模态分解将调频指令分为高低频分量,实现在每分钟时间段内以最优比例在两种资源间分配调频指令。
    • 构建储能调频日成本-效益模型,基于实测的区域控制偏差(ACE)信号,选择不同的重构点进行信号分配并配置其功率和容量。
  5. 仿真分析与验证

    • 在连续负荷扰动工况下进行仿真分析,验证所提控制策略和容量配置方法的有效性。
    • 评估系统频率响应、储能系统运行状态以及火电机组利用率等指标。

三、研究结果与讨论

  1. 控制策略效果

    • 所提控制策略能够有效改善暂态频偏与稳态频偏,提高常规机组利用率。
    • 能够降低储能调频功率和容量配置,提高经济效益。
  2. 容量优化配置优势

    • 采用基于VMD的容量配置方法能够减小储能电池容量配置的大小。
    • 在保证最大经济效益的同时还具有较好的技术指标。
  3. 实际应用前景

    • 研究结果为储能辅助火电机组参与二次调频提供了理论支持和技术参考。
    • 有望推动储能系统在电力系统辅助服务市场中的广泛应用。

四、结论与展望

  1. 结论

    • 储能辅助火电机组二次调频控制策略及容量优化配置研究具有重要意义。
    • 所提控制策略和容量配置方法有效可行,具有广泛的应用前景。
  2. 展望

    • 随着储能技术的不断发展和控制算法的优化,储能系统在电力系统中的应用将更加广泛和高效。
    • 政府对于储能系统的政策支持和市场机制的完善将促进该技术的推广和应用。

📚2 运行结果

运行视频:

链接:https://pan.baidu.com/s/1lcH0LQ42yjrvUPVUNdXJWw 
提取码:4a5c 
--来自百度网盘超级会员V5的分享

部分代码:

 %%%%%%%%%%%%%%%
  % Derivatives %
  %%%%%%%%%%%%%%%
 
  %%%%%%%%%%
  % Update %
  %%%%%%%%%%

  %%%%%%%%%%%
  % Outputs %
  %%%%%%%%%%%
  case 3,
    sys=mdlOutputs(t,x,u);

  %%%%%%%%%%%%%%%%%%%%%%%
  % GetTimeOfNextVarHit %
  %%%%%%%%%%%%%%%%%%%%%%%
  case {1,2,4,9},
    sys=[];

  %%%%%%%%%%%%%
  % Terminate %
  %%%%%%%%%%%%%
 

  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));

end

% end sfuntmpl

%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes

%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded.  This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;

sizes.NumContStates  = 0;
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 1;
sizes.NumInputs      = 1;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]焦盘龙.储能辅助火电机组二次调频控制策略及容量优化配置研究[D].东北电力大学,2020.DOI:10.27008/d.cnki.gdbdc.2020.000096.

🌈4 Simulink仿真、Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值