26--鞋子配对有多丑

5.12

洛谷P7305 [COCI2018-2019#1] Cipele

 二分答案+双指针:

求最大值最小,明显要可以二分。

丑陋值越大(要求越宽松),鞋子配对要求越低(越容易配对)。

既然要配对,那就少不了双指针。

一开始两个指针在每个数据的开头,也就是两个指针都为 1,然后看两个指针代表的数据的相差值有没有大于二分的最小值,如果没有,那么就说明配对成功,两个指针都往后找更大的数据;

如果有,那么就把所代表的数据更小的指针往后找,因为如果大的往后找,找到的就是更大的,肯定也匹配不上。

最后看匹配数等不等于数据量的最小值,因为原题目里有:“一定要匹配到不能匹配为止”的限制。

#include<iostream> 
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;

int n,m,L[100010],R[100010];

bool check(int x) //check在x的丑陋度下,配对数量是否正确
{
	int cnt=0;
	for(int i=1,j=1;i<=n&&j<=m; )
		if(abs(L[i]-R[j])<=x) i++,j++,cnt++;
			
		else if(L[i]>R[j]) j++;
		
		else i++;
		
	return cnt==min(n,m);	
}

int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;++i) cin>>L[i];
	for(int i=1;i<=m;++i) cin>>R[i];
	
	sort(L+1,L+1+n);
	sort(R+1,R+1+m);
	
	int l=-1,r=1e9;
	while(l+1<r)
	{
		int mid=(l+r)/2;
		if(check(mid)) r=mid;
		else l=mid;
	}
	cout<<r;
	
	return 0;
}
### MU-MIMO多用户配对方法及原理 MU-MIMO(多用户多输入多输出)技术通过允许多个终端在同一时间共享信道资源来提高无线网络的整体性能。为了实现这一点,系统需要有效地选择哪些用户可以同时通信,这就是所谓的“用户配对”。 #### 用户配对的重要性 在一个典型的MU-MIMO场景下,基站会尝试找到一组最优的用户组合来进行并行传输。理想情况下,这些用户的信道条件应该尽可能不同,以便减少相互之间的干扰,并最大化空间复用增益[^2]。 #### 配对策略分析 不同的配对策略会对系统的吞吐量和公平性产生影响: - **随机配对 (Random Pairing)**:简单地从候选列表中随机挑选用户组成一对或多对。这种方法容易实施但效率较低,因为它不考虑实际信道状态信息(CSI),可能导致较差的频谱利用率。 - **正交配对 (Orthogonal Pairing)**:基于CSI寻找那些具有高度独立性的用户进行匹配。具体来说就是选取两个或更多个其信道矩阵之间接近于正交关系的接收端作为伙伴。这种方式有助于降低同频道间的串扰效应,从而提升整体性能[^3]。 - **行列式最大原则(Determinant Maximization)**:此方案旨在优化整个子载波分配过程中的总容量。它会选择能使联合协方差矩阵的行列式的绝对值达到最大的那组用户集合。这样的做法不仅考虑到当前时刻的最佳配置,还兼顾到了未来可能的变化趋势,因此被认为是最优解之一。 ```matlab % MATLAB伪代码展示如何模拟三种类型的配对方式 function [pairs, throughput] = simulatePairing(users) % Random Pairing Simulation pairs_random = randperm(length(users), 2); % Orthogonal Pairing Simulation based on channel matrix orthogonality H = getChannelMatrix(); % Assume this function returns the channel matrices of all users. [~, idx_orthogonal] = max(abs(diag(H&#39;*H))); pairs_orthogonal = users(idx_orthogonal); % Determinant Maximization for optimal pairing selection det_values = zeros(size(users)); for i=1:length(users)-1 for j=i+1:length(users) combined_H = cat(2,H(:,i),H(:,j)); det_values(i,j) = abs(det(combined_H&#39; * combined_H)); end end [~, best_pair_idx] = max(max(det_values)); pairs_determinant = find(triu(det_values)==best_pair_idx); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值