基本概念
位运算:
用于对整数类型(int,char,long等)变量中的某一位(bit),或者若干位进行操作。比如:
1)判断某一位是否为1
2)只改变其中某一位,而保持其他位都不变。
C/C++语言提供了六种位运算符来进行位运算操作:
& 按位与(双目)
| 按位或(双目)
^ 按位异或(双目)
~ 按位非(取反)(单目)
<< 左移(双目)
>> 右移(双目)
按位与“&”
将参与运算的两操作数各对应的二进制位进行与操作,只有对应的两个二进位均为1时,结果的对应二进制位才为1,否则为0.
例如:表达式“21&18”的计算结果是16(即二进制数10000),因为:
21用二进制表示就是:
0000 0000 0000 0000 0000 0000 0001 0101
18用二进制表示就是:
0000 0000 0000 0000 0000 0000 0001 0010
二者按位与所得结果是:
0000 0000 0000 0000 0000 0000 0001 0000(16)
通常用来将某变量中的某些位清零且同时保留其他位不变。也可以用来获取某变量中的某一位。
例如:如果需要将int型变量n的低8位全置成0,而其余位不变,则可以执行:
n=n & 0xffffff00;
也可以写成:
n &= 0xffffff00;
如果n是short类型的,则只需执行:
n &=ff00;
如何判断一个int型变量n的第七位(从右往左,从0开始数)是否为1?
只需看表达式“n & 0x80”的值是否等于0x80即可。
(0x80:1000 0000)
按位或“|”
将参与运算的两操作数各对应的二进制位进行或操作,只有对应的两个二进制都为0时,结果的对应二进制才是0,否则为1。
例如:表达式“21|18”的值是23,因为:
21: 0000 0000 0000 0000 0000 0000 0001 0101
18: 0000 0000 0000 0000 0000 0000 0001 0010
21|18: 0000 0000 0000 0000 0000 0000 0001 0111
按位或运算通常用来将某变量中的某些位置1且保留其他位不变。
例如,如果需要将int型变量n的低8位全置成1,而其余位不变,则可以执行:
n|=0xff;
0xff:1111 1111
按位异或“^”
将参与运算的两操作数各对应的二进制位进行异或操作,即只有对应的两个二进制不相同时,结果的对应二进制位才是1.否则为0。
例如:表达式“21^18”的值是7(即二进制数111)
21: 0000 0000 0000 0000 0000 0000 0001 0101
18: 0000 0000 0000 0000 0000 0000 0001 0010
21^18:0000 0000 0000 0000 0000 0000 0000 0111
按位异或运算通常用来将某变量中的某些位取反,且保留其他位不变。
例如,如果需要将int型变量n的低8位取反,而其余位不变,则可以执行:
n^=0x
ff;
0xff:1111 1111
异或运算的特点是:
如果a^b=c,1那么就有c^b=a以及c^a=b。(穷举法可证明)
此规律可以用来进行最简单的加密和解密。
另外异或运算还能实现不通过临时变量,就能交换两个变量的值
int a=5,b=7;
a=a^b;
b=b^a;
a=a^b;
即实现a,b值交换。穷举法可证
按位非“~”
按位非运算符“~”是单目运算符。
其功能是将操作数中的二进制位0变成1,1变成0。
例如,表达式“~21”的值是整数型0xffffffea
21:0000 0000 0000 0000 0000 0000 0001 0101
~21:1111 1111 1111 1111 1111 1111 1110 1010
左移运算符“<<”
表达式:a<<b
的值是:将a各二进位全部左移b位后得到的值。左移时,高位丢弃,低位补0。a的值不因运算而改变。
例如:9<<4
9的二进制形式:
0000 0000 0000 0000 0000 0000 0000 1001
因此,表达式“9<<4”的值,就是将上面的二进制数左移4位,得:
0000 0000 0000 0000 0000 0000 1001 0000
即为十进制的144
实际上,左移一位,就等于乘以2,左移n位就等于是乘以2的n次方。而左移操作比乘法操作快得多。
右移运算符“>>”
表达式:a >> b
的值是:将a各二进位全部右移b位后得到的值。右移时,移出最右边的位就被丢弃。a的值不因运算而改变。
对于有符号数,如long,int,short,char类型变量,在右移时,符号位(即最高位)将一起移动,并且大多数C/C++编译器规定,如果原符号位为1,则右移时高位就补充1,原符号位为0,则右移时高位就补充0.
实际上,右移n位,就相当于左操作数除以2的n次方,并将结果往小里取整。
-25>>4=2(-25/16≈ -1.56向小里取整则为-2)
-2>>4=-1
18>>4=1
#include<stdio.h>
int main()
{
int n1=15;
short n2=-15;
unsigned short n3=0xffe0;
char c=15;
n1=n1>>2;
n2>>=3;
n3>>=4;
c>>=3;
printf("n1=%d,n2=%x,n3=%x,c=%x",n1,n2,n3,c);
}
/*
输出:n1=3,n2=fffffffe,n3=ffe,c=1*/
n1:0000 0000 0000 0000 0000 0000 0000 1111
n1>>=2:变成3
0000 0000 0000 0000 0000 0000 0000 0011
n2:1111 1111 1111 0001
n2>>=3:变成 fffe,即-2
1111 1111 1111 1110
n3:1111 1111 1110 0000
n3>>=4:变成ffe
0000 1111 1111 1110
c:0000 1111
c>>=3:变成1
0000 0001