【备战秋招】每日一题:2023.08.23-得物-第二题-最少数字

为了更好的阅读体检,可以查看我的算法学习网
在线评测链接:P1482

题目内容

小明用计算机随机生成了 N N N个正整数,他希望从这 N N N个数中选取若干个数,使得它们的和等于 M M M。这些随机生或的数字可能会相同,但是每个数字最多只允许使用一次。

当然这样的选取方案可能不存在,也可能有多个。

现在希望你编写一个程序,能够找出数字个数最少的选取方案,输出对应的最少数字的个数。如果无解输出" N o No No s o l u t i o n solution solution"

输入描述

单单组输入,每组输入 2 2 2行。
1 1 1行包含两个正整数 N N N M M M,分别表示初始输入的正整数个数和目标数字和( N ≤ 1 e 3 , m ≤ 1 e 5 N \leq 1e3,m \leq 1e5 N1e3,m1e5)

2 2 2行为 N N N个正整数,两两之间用空格隔开(每一个正整数均小于等于 l e 5 le5 le5)。

输出描述

输出数字个数最少的选取方案中所有包含的最少数字个数,如果无解输出" N o No No $solution $"

样例

输入

5 5
1 3 2 1 1

输出

2

2.最小数字

题目内容

小明用计算机随机生成了 N N N个正整数,他希望从这 N N N个数中选取若干个数,使得它们的和等于 M M M。这些随机生或的数字可能会相同,但是每个数字最多只允许使用一次。

当然这样的选取方案可能不存在,也可能有多个。

现在希望你编写一个程序,能够找出数字个数最少的选取方案,输出对应的最少数字的个数。如果无解输出" N o s o l u t i o n No solution Nosolution"

输入描述

单单组输入,每组输入 2 2 2行。
1 1 1行包含两个正整数 N N N M M M,分别表示初始输入的正整数个数和目标数字和( N ≤ 1 e 3 , m ≤ 1 e 5 N \leq 1e3,m \leq 1e5 N1e3,m1e5)

2 2 2行为 N N N个正整数,两两之间用空格隔开(每一个正整数均小于等于 l e 5 le5 le5)。

输出描述

输出数字个数最少的选取方案中所有包含的最少数字个数,如果无解输出" N o s o l u t i o n No solution Nosolution "

样例

输入

5 5
1 3 2 1 1

输出

2

解题思路

这里考虑通过n个数字来拼凑出一个m,那么显然是一个01背包
关于01背包的问题,这里不做过多的赘述,可以参考这里或者这里.

Cpp代码

#include <bits/stdc++.h>
using namespace std;

const int maxn = 1e5 + 10;
int a[1010];
int f[maxn];

int main()
{
    ios::sync_with_stdio(false);

    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
    {
        cin >> a[i];
    }
    memset(f, 0x3f, sizeof(f));
    const int st = f[0];
    f[0] = 0;
    for (int i = 1; i <= n; i++)
    {
        for (int j = m; j >= a[i]; j--)
        {
            f[j] = min(f[j], f[j - a[i]] + 1);
        }
    }
    if (f[m] == st)
    {
        cout << "No solution" << endl;
    }
    else
        cout << f[m] << endl;
}

java代码

import java.util.Arrays;
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        int N = 1<<30;
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int m = scanner.nextInt();
        int[] nums = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            nums[i] = scanner.nextInt();
        }
        int[] f = new int[m + 1];
        Arrays.fill(f, N);
        f[0] = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = m; j >= nums[i]; j--) {
                f[j] = Math.min(f[j], f[j - nums[i]] + 1);
            }
            for (int k : f)
                System.out.print(k + " ");
            System.out.println();
        }
        if (f[m] == N) {
            System.out.println("No solution");
        } else {
            System.out.println(f[m]);
        }
    }
}

python代码

if __name__ == "__main__":
    n, m = map(int, input().split())
    a = list(map(int, input().split()))
    f = [1e9 for i in range(0, m + 1)]
    f[0] = 0
    for i in range(0, n):
        for j in range(m , a[i] - 1, -1):
            f[j] = min(f[j], f[j - a[i]] + 1)
    if(f[m] == 1e9):
        print("No solution")
    else:
        print(f[m]) 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

塔子哥学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值