业务背景:
随着企业日常经营活动的进行,企业内部必然产生了各式各样的数据,如何利用这些数据得出有益的见解,并支持我们下一步的产品迭代以及领导决策就显得尤为重要。
A/B测试是互联网企业常用的一种基于数据的产品迭代方法,它的主要思想是在控制其他条件不变的前提下对不同(或同一、同质)样本设计不同实验水平(方案),并根据最终的数据变现来判断自变量对因变量的影响;A/B测试的理论基础主要源于数理统计中的假设检验部分,此部分统计学知识读者可自行探索。
数据说明:
city.xlsx:
test.xlsx:
计算ROI:
投资回报率(ROI)是一种绩效评估,用于评估投资效率或比较许多不同投资的效率。投资回报率试图直接衡量特定投资的回报量,相对于投资成本。为了计算投资回报率,将投资的收益(或回报)除以投资成本。结果以百分比或比率表示。
ROI=收回价值 / 成本投入 *100%
requests检验
数据共58条,对照组与实验组各29条,样本量<30。
requests方差检验(levene检验requests是否齐方差)
记两组requests方差分别为c1,c2
零假设H0:c1=c2;备选假设H1:c1≠c2
显著性水平取0.05
得到p值大于0.05,所以不拒绝原假设,因此可认为两组实验requests齐方差。
requests均值检验
该数据为同一样本实验前后的不同水平,因此选用配对样本t检验。
记两组requests均值分别为u1,u2
零假设H0:u1=u2;备选假设H1:u1≠u2
显著性水平取0.05
p值大于0.05,不拒绝原假设,因此可认为实验条件对requests影响不显著。
GMV检验
GMV方差检验
GMV均值检验

ROI检验
ROI方差检验
ROI均值检验

城市运营分析

1.单量最多的时间点
可见,在11、12、13这三个时间点内,12点用户发起订单的需求是最大的,其次是13点,11点。
司机运营平台应考虑加大该时点车辆供应。
2.单量最多的日期
单月订单请求数随日期的变化呈周期性变化,我们猜测4个峰值分别对应4个周末,周末用户出行需求较大。
经验证发现猜想与数据吻合,因此司机运营平台应考虑加大周末、节假日的车辆供给。
3.各时段订单完成率

13点订单需求较多,但订单完成率仅47%,说明较多订单没有得到及时相应。
客运部应重点关注13点订单相应时长,排查具体原因。
4.单月每日订单完成率
单月每日订单完成率规律不太明显,但几个谷值基本都出现在周末附近,说明客户出行需求的提升可能导致响应率的降低。
5.顾客等待时间
各时点用户等待时长差异不明显,但13点最高。
客运部一方面应提升用户预计等待时长的准确性,另一方面优化平台派单逻辑等。
6.司机在忙率
12点司机在忙总时长最长,在忙率也最高,用户订单请求也最多,说明车辆总数偏少
7.订单时长
12点用户订单需求较多,同时订单时长最长,说明这个时间点是一个非常重要的时间点。
13点订单量也较大,此时点司机服务时长较短。
为优化用户出行体验,司机运营平台可联合客运部可考虑此时段尽量分配总服务时长较长的司机来接单(经验较为丰富)。
本文转载链接:https://blog.csdn.net/qq_59583497/article/details/129390972