【涂色 —— 区间dp】

12 篇文章 0 订阅

题目

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 5010;
int a[N], f[N][N];

int main()
{
    int n;
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i];
        if(a[i] == a[i-1])
        {
            i--;
            n--;
        }
    }
    for(int len = 2; len <= n; len++)
    {
        for(int i = 1; i + len - 1 <= n; i++)
        {
            int j = i + len - 1;
            if(a[i] == a[j]) f[i][j] = f[i+1][j-1] + 1;
            else f[i][j] = min(f[i+1][j], f[i][j-1]) + 1;
        }
    }
    
    cout << f[1][n];
    return 0;
}

思路

预处理

将颜色相同的元素合并,更新n值

状态定义

f[i][j] 表示从第 i 个元素到第 j 个元素涂成相同颜色的方法集合

f[i][j] 的值等于集合中方案的的最小值

目标状态

f[1][n]

状态转移

首先明确扩展的过程中,联通块自然是连续的一段,而最后一步就是我们转移的讨论点、子集的划分点

1. \; when \; a[i] \neq a[j]

f[i][j] = min(f[i+1][j], \; f[i][j-1]) + 1

若端点元素颜色不同,则联通块不论是另一个端点还是非端点元素的颜色,都与最后一个端点元素颜色不同,必然要耗费一次步骤

2. \; when \; a[i] = a[j]

f[i][j] = f[i+1][j-1] + 1

若端点元素颜色相同,则多出一种情况,就是最后一次将两个端点元素同时联通。

比较以下这三个方案的表达式可知,上面这个表达式就是考虑完全后最好的方案(第三个方案的子段是前两个子段的一部分)

f[i+1][j]+1, \; f[i][j-1]+1 ,\; f[i+1][j-1] + 1

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值