题目
思路
- 求[1, i]子段的划分方法,考虑最后一个子段
- 最后一个子段的范围是[j, i]
- 剩余的[1, j-1]子段的划分是一个子问题,构成dp解决问题的要素
- 状态定义 f[i] :1 - i 子段划分方法数
- 目标状态 f[n]
- 状态转移 枚举每个可能的 j ,f[i] = sum(f[j-1])
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+10, mod = 1e9+7;
int a[N], f[N];
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int n;
cin >> n;
for(int i = 1; i <= n; i++)
cin >> a[i];
f[0] = 1;
for(int i = 1; i <= n; i++)
{
int maxx = a[i], minn = a[i];
for(int j = i; j >= 1; j--)
{
maxx = max(maxx, a[j]), minn = min(minn, a[j]);
if(i - j == maxx - minn) f[i] = (f[i] + f[j-1]) % mod;
}
}
cout << f[n];
}