题意:
有个n个骑士,每个骑士都有且仅有一个自己最厌恶的骑士,现在需要选出一批骑士,要求每个骑士在其中都不会碰上自己最厌恶的骑士,请输出能有的最大战力和
思路:
1.首先该题和没有上司的舞会非常相似,可以逆序查找讨厌当前骑士的所有骑士,靠构造带根节点的数来求出每个连通块的最大战力
2.遇到的问题: 环
解决:可以发现每个连通块有且仅有一个环,通过拆环可以把连通块构造成想要的树形
代码如下:
#include <iostream>
#include<vector>
using namespace std;
typedef long long ll;
const int N = 1e6 + 5;
ll n, a[N], x, y, father[N], dp[N][2],sum,vist[N];
vector<int>son[N];
void dfs(int k,int x) {
//标记连通块上所有点
vist[k] = 1;
dp[k][1] = a[k];
for (int i = 0; i < son[k].size(); i++) {
int u = son[k][i];
//环被拆开的位置
if (x == u)continue;
dfs(u,x);
dp[k][1] += dp[u][0];
dp[k][0] += max(dp[u][1], dp[u][0]);
//使用后顺带清理数据
dp[u][0] = 0; dp[u][1] = 0;
}
}
//找环
void dfs0(int k) {
//给进过的点做记号
vist[k] = 1;
int u = father[k];
//找到对应环
if (vist[u]) {
//分别以u,k为根节点建树,连通块的最大战力为max(dp[u][0],dp[k][0])
dfs(k, k); x = dp[k][0];
dp[k][0] = 0; dp[k][1] = 0;
dfs(u, u); y = dp[u][0];
dp[u][0] = 0; dp[u][1] = 0;
sum+=max(x,y);
}
else
dfs0(u);
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i] >> y;
father[i] = y;
//靠逆向查找建树
son[y].push_back(i);
}
for (int i = 1; i <= n; i++) {
if(vist[i]==0)dfs0(i);
}
cout << sum << endl;
return 0;
}