[ZJOI2008] 骑士

文章介绍了一个关于n个骑士的问题,每个骑士都有一个最厌恶的对手。目标是找出一组骑士,使得在这组骑士中没有一个会遇到自己讨厌的人,同时计算出这种情况下可能达到的最大战力。通过构建树形结构并利用深度优先搜索(DFS)拆解环,找到每个连通块的最大战力,最终求出总和。
摘要由CSDN通过智能技术生成

题意:

有个n个骑士,每个骑士都有且仅有一个自己最厌恶的骑士,现在需要选出一批骑士,要求每个骑士在其中都不会碰上自己最厌恶的骑士,请输出能有的最大战力和

思路:

1.首先该题和没有上司的舞会非常相似,可以逆序查找讨厌当前骑士的所有骑士,靠构造带根节点的数来求出每个连通块的最大战力
2.遇到的问题: 环
解决:可以发现每个连通块有且仅有一个环,通过拆环可以把连通块构造成想要的树形

代码如下:

#include <iostream>
#include<vector>
using namespace std;
typedef long long ll;
const int N = 1e6 + 5;
ll n, a[N], x, y, father[N], dp[N][2],sum,vist[N];
vector<int>son[N];
void dfs(int k,int x) {
    //标记连通块上所有点
    vist[k] = 1;
    dp[k][1] = a[k];
    for (int i = 0; i < son[k].size(); i++) {
        int u = son[k][i];
        //环被拆开的位置
        if (x == u)continue;
        dfs(u,x);
        dp[k][1] += dp[u][0];
        dp[k][0] += max(dp[u][1], dp[u][0]);
        //使用后顺带清理数据
        dp[u][0] = 0; dp[u][1] = 0;
    }
}
//找环
void dfs0(int k) {
    //给进过的点做记号
    vist[k] = 1;
    int u = father[k];
    //找到对应环
    if (vist[u]) {
        //分别以u,k为根节点建树,连通块的最大战力为max(dp[u][0],dp[k][0])
        dfs(k, k); x = dp[k][0];
        dp[k][0] = 0; dp[k][1] = 0;
        dfs(u, u); y = dp[u][0];
        dp[u][0] = 0; dp[u][1] = 0;
        sum+=max(x,y);
    }
    else
    dfs0(u);
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> a[i] >> y;
        father[i] = y;
        //靠逆向查找建树
        son[y].push_back(i);
    }
    for (int i = 1; i <= n; i++) {
        if(vist[i]==0)dfs0(i);
    }
    cout << sum << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值