1040: [ZJOI2008]骑士

仙人掌暂时不会,只好来水一水基环外向树。

话说无向的到底应该怎么叫?外向?内向?基环无向树(太诡异了)?

然后对于这道题,由于是基环,所以要拆掉环上的一条边(u,v)

然后树形DP

u不选,dp。

v不选,dp。

取两者的最大值加到ans里去。

然后我很沙茶地把当前点i当成了根,跪了好几次。

#include<iostream>
#include<cstdio>
#include<cstring>
usingnamespace std;
constint N=1000000+5;
typedeflong long ll;
structEdge{intto,next;}e[N*2];
ll dp[N][2],val[N];
inthead[N],cnt=1,root,root_to,ban;
boolvis[N],v1[N],v2[N];
voidins(intu,intv){
    cnt++;e[cnt].to=v;e[cnt].next=head[u];head[u]=cnt;
}
voidfindcir(intu,intfa){
    for(inti=head[u];i;i=e[i].next){
        intv=e[i].to;
        if(!vis[v]){
            vis[v]=true;
            findcir(v,u);
        }elseif(v!=fa)root=u,root_to=v,ban=i;
    }
}
voiddpcir(intu){
    dp[u][0]=0;dp[u][1]=val[u];
    for(inti=head[u];i;i=e[i].next)
    if(i!=ban&&(i^1)!=ban&&!v1[e[i].to]){
        intv=e[i].to;
        v1[v]=true;
        dpcir(v);
        dp[u][0]+=max(dp[v][1],dp[v][0]);
        dp[u][1]+=dp[v][0];
    }
}
voiddpban(intu){
    dp[u][0]=0;dp[u][1]=val[u];
    for(inti=head[u];i;i=e[i].next)
    if(i!=ban&&(i^1)!=ban&&!v2[e[i].to]){
        intv=e[i].to;
        v2[v]=true;
        dpban(v);
        dp[u][1]+=dp[v][0];
        if(v==root_to)dp[u][0]+=dp[v][0];
        elsedp[u][0]+=max(dp[v][0],dp[v][1]);
    }
}
intmain(){
    intn;scanf("%d",&n);intto;
    for(inti=1;i<=n;i++){
        scanf("%lld%d",&val[i],&to);
        ins(i,to);ins(to,i);
    }
    ll ans=0,res;
    for(inti=1;i<=n;i++)
    if(!vis[i]){
        vis[i]=true;findcir(i,0);
        v1[root]=true;dpcir(root);res=dp[root][0];
        v2[root]=true;dpban(root);res=max(res,max(dp[root][0],dp[root][1]));
        ans+=res;
    }
    printf("%lld",ans);
    return0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值