动态规划-背包问题-二维背包


问题描述

所谓二维背包,无非就是在原来的01背包基础上加了一个限制条件,这里假如是承重。

先回顾一下01背包的问题描述:给定一个容积为V的背包,现在有n件物品,第i件物品的体积为w i,价值为vi,每件物品只能拿或者不拿,请求出体积总和不超过V的最大价值。

现在加一个承重的条件就变成了给定一个体积为V,承重为M的背包,现有N件物品,第i件物品的体积为vi,重量为mi,价值为wi 每件物品拿或不拿,求体积总和不超过V且承重不超过M最大价值。

状态

参考原来01背包的状态dp[i][j]表示前i件物品,体积为j

二维背包就是加了一个重量的维度。
dp[i][j][k]表示前i件物品,体积为j,重量为k的最大价值。

状态转移方程

dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-v[i]][k-m[i]]+v[i])

滚动数组优化

状态转移方程为:dp[j][k]=max(dp[j][k],dp[j-v][k-m]+w) 

例题

题目描述

如上

输入描述

第一行:三个整数N,V,M。
接下来的N行,每行三个整数v,m,w,用空格隔开。

输出描述

输出一个整数表示最大价值

代码

N,V,M=map(int,input().split())
dp=[[0]*(M+1) for _ in range(V+1)]
for i in range(N):
    v,m,w=map(int,input().split())
    for j in range(V,v-1,-1):
        for k in range(M,m-1,-1):
            dp[j][k]=max(dp[j][k],dp[j-v][k-m]+w)
print(dp[V][M])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值