Project Euler_Problem 214_Totient Chains_欧拉函数

原题目:

题目大意:<n的与n互质的数的数量为f(n),这个f(n)称为欧拉函数,反复迭代f(n),直到f(n)变成0,这个反复迭代的过程称他为欧拉函数串,问小于四千万,串长为25的且质数的数有多少个

题解思路:

然后利用欧拉筛同步线性计算出欧拉函数序列即可

代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <iomanip>  //cout输出精度控制需要,fixed、setpercison()
#include <time.h> 
#include <map> 
using namespace std;
#define ll long long



ll A[2000000], B[2000000], C[2000000],D[30000000],D1[30000000];
ll E[1000][1000];
ll R[100][50][50];
bool bA[10000000];

map <ll, bool> Map4;


ll ans1 = 0, ans2 = 0, flag;


struct Math{   //自用函数模板
    struct STL{
        
    }Stl;

    struct NumT {

        /*struct Pythagorean_triangle {
            ll a, b, c;
        }Ptg_r[10000000];
        ll Ptg_r_cnt=0;
        void get_Ptg_r(ll tar) {
            ll i, j, k,p,q;
            ll x, y, z;
            for (i = 1; i * i < tar; i++) {
                if (i & 1)j = 2;
                else j = 1;
                for (; j < i; j+=2) {
                    x = 2 * i * j;
                    y = i * i - j * j;
                    z = i * i + j * j;
                    if (x + y + z > tar)break;
                    if (x > y) {
                        k = y;
                        y = x;
                        x = k;
                    }

                    if (y - x != 1)continue;

                    if (gcd(i, j) == 1) {
                       // Ptg_r[++Ptg_r_cnt].a = x; Ptg_r[Ptg_r_cnt].b = y; Ptg_r[Ptg_r_cnt].c = z;
                        Ptg_r[0].a = x; Ptg_r[0].b = y; Ptg_r[0].c = z;
                        if (M.NT.Ptg_r[0].c % (M.NT.Ptg_r[0].b - M.NT.Ptg_r[0].a) == 0) {
                            p = M.NT.Ptg_r[0].a + M.NT.Ptg_r[0].b + M.NT.Ptg_r[0].c;
                            for (q = 1; q * p < tar; q++) {
                                ans1++;
                            }


                        }


                    }
                }
            }
        }*/


        ll Rad[1000000];
        void get_rad(ll x) {
            ll i, j,k;

            for (i = 1; i <= x; i++) {
                Rad[i] = 1;
                k = i;
                for (j = 1; prime[j] <= i; j++) {
                    
                    if (k % prime[j] == 0) {
                        Rad[i] *= prime[j];

                        while (k % prime[j] == 0) {
                            k = k / prime[j];
                        }
                    }
                }
            }

        }

        ll prime_pow(ll x,ll y,ll mod) {
            ll ans = 1;
            while (y) {
                if (y & 1) {
                    ans = ( (ans%mod) * (x%mod) ) % mod;
                }
                x = ( (x%mod) * (x%mod) )%mod;
                y >>= 1;
            }
            return ans % mod;
        }

        ll prime_mul(ll x, ll y, ll mod) {
            ll ans = 0;

            while(y) {
                if (y & 1) {
                    ans = (ans + x) % mod;
                }
                x = (x + x) % mod;
                y >>= 1;
            }
            return ans;

        }

        ll prime[6000000],phi[50000000], pcnt;
        bool prime_vis[100000000];
        bool is_prime_MR(ll x,ll r) {
            if (x == 2)return 1;
            if (!(x%2))return 0;
            ll i, j,k,t,X,Y;

            k = x-1;
            t = 0;
            while (!(k&1)) {
                k >>= 1;
                t++;
            }
            srand(time(NULL));
            for (i = 1; i <= r; i++) {

                ll a = rand() % (x - 1) + 1;
                X = prime_pow(a, k, x);

                for (j = 0; j < t; j++) {
                    Y = prime_mul(X, X, x);

                    if (Y == 1 && X != 1 && X != x - 1) {
                        return 0;
                    }
                    X = Y;
                }

                if (X != 1) {
                    return 0;
                }

            }
            return 1;

        }

        bool is_prime_Bf(ll x) {
            ll i, j,k,cnt=0;

            if (x == 2)return 1;
            if (x % 2 == 0)return 0;
            for (i = 2; i <= sqrt(x); i++) {
                if (x % i == 0)return 0;
            }
            return 1;

        }

        void get_prime_Euler(ll x) {
            pcnt = 0; memset(prime_vis, 0, sizeof(prime_vis));
            ll i, j;

            for (i = 2; i <= x; i++) {
                if (prime_vis[i] == 0) {
                    prime[++pcnt]=i;
                }
                for (j = 1; j <= pcnt; j++) {
                    if (i * prime[j] > x)break;
                    prime_vis[i * prime[j]] = 1;
                    if (i % prime[j] == 0)break;

                }
            }

        }

        void get_prime_phi(ll x) {
            ll i, j; pcnt = 0; memset(prime_vis, 0, sizeof(prime_vis));
            for (i = 2; i <= x; i++) {
                if (prime_vis[i] == 0) {
                    prime[++pcnt] = i;
                    phi[i] = i - 1;
                }
                for (j = 1; j <= pcnt; j++) {
                    if (i * prime[j] > x)break;
                    prime_vis[prime[j] * i] = 1;

                    if (i % prime[j] == 0) {
                        phi[i * prime[j]] = prime[j] * phi[i];
                        break;
                    }
                    phi[i * prime[j]] = (prime[j] - 1) * phi[i];


                }



            }
        }

        ll gcd(ll a, ll b) {
            if (a < b) {
                ll c = a;
                a = b; b = c;
            }
            if (a % b == 0)return b;
            else return gcd(b, a % b);

        }

    }NT;

    struct NumA {
        double x[100], y[100];

        double Lag_in(ll X, ll K) {
            int i, j;
            double ans = 0;
            double li;

            for (i = 1; i <= K; i++) {
                li = 1;
                for (j = 1; j <= K; j++) {
                    if (i == j)continue;
                    li = li * ((X - x[j]) / (x[i] - x[j]));
                }
                ans = ans + (li) * (y[i]);
            }

            return ans;
        }


    }NA;

}M;


void serch1(ll sum,ll dep,ll a,ll b) {

}

void solve() {
    ll i, j,k,x,y,z,p,q,u,v;
    ll N = 40000000,NN=15000000;

    M.NT.get_prime_phi(N);

    for (i = 1; i < M.NT.pcnt; i++) {
        x = M.NT.phi[M.NT.prime[i]];
        u = 2;
        while (x > 1) {
            x = M.NT.phi[x];
            u++;
        }
        if (u == 25) {
            ans1=ans1+M.NT.prime[i];
        }
        if(i%10000==0)
        printf("%lld %lld\n", M.NT.prime[i],u);
    }

    
    printf("%lld\n",ans1);
}

int main()
{

    long test;
    clock_t start, finish;  // clock_t为时钟计时单元数
    start = clock();        // clock()返回此时CPU时钟计时单元数
    solve();
    finish = clock();
    cout << "代码运行花费时间为:" << fixed << setprecision(8)//控制时间输出精度8位,右侧自动补0。
        << double(finish - start) / CLOCKS_PER_SEC << "s" << endl;  //时间计算过程
    
}


  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值