相关概念
事件
1.基本事件:基本事件是指试验中不可再分的最简单的事件。每个基本事件代表一个单一的可能结果。
2.复合事件:复合事件是由多个基本事件组合而成的事件。复合事件代表多个可能结果的集合。
3.必然事件:必然事件是指在试验中一定会发生的事件。必然事件的概率为1。在样本空间中,必然事件包括了样本空间中的所有样本点。
4.不可能事件:不可能事件是指在试验中绝对不会发生的事件。不可能事件的概率为0。通常用∅表示。
5.样本空间:样本空间是指试验中所有可能结果的集合。样本空间通常用大写字母 Ω 表示。
6.样本点:样本点是指样本空间中的每一个元素,即每一个可能的结果。样本点通常用小写字母ω表示。
事件间的关系
1.包含关系:包含关系是指一个事件是另一个事件的子集。如果事件 A 包含在事件 B 中,那么 A 发生时,B 必然发生,即:A⊆B
2.并集:并事件是指两个或多个事件中至少有一个事件发生的情况。事件 A 和事件 B 的并事件记作 A∪B或A+B,表示 A 或 B 发生。
3.交集:交事件是指两个或多个事件同时发生的情况。事件A 和事件 B 的交事件记作 A∩B或AB,表示 A 和 B 同时发生。
4.差集:如果事件 A 发生而事件 B 不发生,则表示这些事件的差集发生了。即将事件A中的A和B的公共部分去掉。事件 A 和 B 的差集表示为 A−B
5.互斥事件:互斥事件是指两个事件不能同时发生。如果事件A 和事件 B 是互斥事件,那么 A 和 B 的交集为空集,即:AB=∅
6.对立事件:对立事件是指两个事件互为对立,即一个事件发生时,另一个事件必然不发生。如果事件 A 和事件 B 是对立事件,那么 A 和 B 的并集是样本空间,且 A 和 B 的交集为空集,即:A+B=Ω且AB=∅ 通常,事件 A 的对立事件记作或
概率公式
事件的运算律
1.并集的交换律:A∪B=B∪A
2.交集的交换律:A∩B=B∩A
3.并集的结合律:(A∪B)∪C=A∪(B∪C)
4.交集的结合律:(A∩B)∩C=A∩(B∩C)
5.并集对交集的分配律:A∪(B∩C)=(A∪B)∩(A∪C)
6.交集对并集的分配律:A∩(B∪C)=(A∩B)∪(A∩C)
7.第一对偶律:
8.第二对偶律:
概率类型
1.古典模型:(A:事件 A 包含的基本事件数 B:样本空间中的基本事件总数)
2.排列(不重复排列):
3.组合:
4.几何概型:(m(A):事件 A 对应的几何区域的度量 , m(Ω) :样本空间 Ω 的度量 )
5.频率:频率是通过实际计数得到的
6.基本性质(公理化)
- 性质1:
- 性质2:
- 性质3:
且
- 性质4:
7.条件概率:、
和
8.