概率相关知识点归纳

相关概念

事件

1.基本事件:基本事件是指试验中不可再分的最简单的事件。每个基本事件代表一个单一的可能结果。

2.复合事件:复合事件是由多个基本事件组合而成的事件。复合事件代表多个可能结果的集合。

3.必然事件:必然事件是指在试验中一定会发生的事件。必然事件的概率为1。在样本空间中,必然事件包括了样本空间中的所有样本点。

4.不可能事件:不可能事件是指在试验中绝对不会发生的事件。不可能事件的概率为0。通常用∅表示。

5.样本空间:样本空间是指试验中所有可能结果的集合。样本空间通常用大写字母 Ω 表示。

6.样本点:样本点是指样本空间中的每一个元素,即每一个可能的结果。样本点通常用小写字母ω表示。

事件间的关系

1.包含关系:包含关系是指一个事件是另一个事件的子集。如果事件 A 包含在事件 B 中,那么 A 发生时,B 必然发生,即:A⊆B

2.并集:并事件是指两个或多个事件中至少有一个事件发生的情况。事件 A 和事件 B 的并事件记作 A∪B或A+B,表示 A 或 B 发生。

3.交集:交事件是指两个或多个事件同时发生的情况。事件A 和事件 B 的交事件记作 A∩B或AB,表示 A 和 B 同时发生。

4.差集:如果事件 A 发生而事件 B 不发生,则表示这些事件的差集发生了。即将事件A中的A和B的公共部分去掉。事件 A 和 B 的差集表示为 A−B

5.互斥事件:互斥事件是指两个事件不能同时发生。如果事件A 和事件 B 是互斥事件,那么 A 和 B 的交集为空集,即:AB=∅

6.对立事件:对立事件是指两个事件互为对立,即一个事件发生时,另一个事件必然不发生。如果事件 A 和事件 B 是对立事件,那么 A 和 B 的并集是样本空间,且 A 和 B 的交集为空集,即:A+B=Ω且AB=∅ 通常,事件 A 的对立事件记作A^c\overline A

概率公式

事件的运算律

1.并集的交换律:A∪B=B∪A

2.交集的交换律:A∩B=B∩A

3.并集的结合律:(A∪B)∪C=A∪(B∪C)

4.交集的结合律:(A∩B)∩C=A∩(B∩C)

5.并集对交集的分配律:A∪(B∩C)=(A∪B)∩(A∪C)

6.交集对并集的分配律:A∩(B∪C)=(A∩B)∪(A∩C)

7.第一对偶律:\bar{(A\cup B)}==\bar{A} \cap \bar {B}

8.第二对偶律:\bar{(A\cap B)}==\bar{A} \cup \bar {B}

概率类型

1.古典模型:P(A)=\frac{A}{\Omega }(A:事件 A 包含的基本事件数   B:样本空间中的基本事件总数)

2.排列(不重复排列):P(n,r)=\frac{n!}{(n-r)!}

3.组合:C(n,r)=\binom{n}{r}=\frac{P(n,r)}{r!}=\frac{n!}{r!(n-r)!}

4.几何概型:P(A)=\frac{m(A)}{m(\Omega )}(m(A):事件 A 对应的几何区域的度量 , m(Ω) :样本空间 Ω 的度量 )

5.频率:频率是通过实际计数得到的

6.基本性质(公理化)

  • 性质1:P(\phi )= 0
  • 性质2:P(\bar{A})= 1-P(A)
  • 性质3:P(A-B)=P(A)-P(AB),A\supset B,P(A-B)=P(A)-P(B)P(A)\geq P(B)
  • 性质4:P(A+B)=P(A)+P(B)-P(AB)

7.条件概率:P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{P(AB)}{P(B)}P(AB)=P(B)P(A|B)P(ABC)=P(A)P(B|A)P(C|AB)

8.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值