自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(58)
  • 收藏
  • 关注

原创 基于Yolo11的无人机小目标检测系统的设计与性能优化改进项目实现

该项目旨在开发一个基于YOLO11的无人机目标检测系统,能够实时识别并定位无人机拍摄过程中捕捉的小目标。考虑到无人机拍摄的目标通常较小,系统将采用特定的调优策略,以提高小目标的检测精度和召回率。

2025-02-16 17:04:29 469

原创 基于YOLOV5的车牌识别项目实现

随着智能交通系统的不断发展,车辆车牌识别技术在交通管理、停车收费、安全监控等领域发挥着越来越重要的作用。本项目旨在开发一个高效准确的车牌识别系统,利用深度学习模型YOLOv5进行车牌检测,并结合光学字符识别(OCR)技术实现车牌号码的提取。通过这个系统,可以提高交通管理和安全监控的自动化水平,减少人工干预。

2025-02-16 16:51:48 330

原创 基于VIT的猫狗图像分类项目

当你遍历时,DataLoader会自动地为每个批次的数据调用的方法,并传入正确的idx值。这个过程是自动进行的,无需你手动指定索引。idx是由DataLoader在内部处理时自动生成并传入的,用于指向当前需要处理的数据样本的索引。这使得你能够在方法中根据索引获取对应的数据样本。DataLoader的参数意味着在每个epoch开始时,数据集的样本将被随机打乱。因此,idx将代表随机选择的样本索引,这有助于模型学习时不会对数据顺序产生依赖,从而提高模型的泛化能力。

2025-02-16 15:32:58 604

原创 视觉大模型VIT

VIT 是 Vision Transformer 的缩写。Vision Transformer 是一种基于 Transformer 架构的计算机视觉模型,最初由谷歌研究团队在 2020 年提出。它将 Transformer 架构(原本用于自然语言处理任务)应用于图像分类任务,取得了显著的效果。Transformer很强,但视觉任务中的应用还有限。ViT尝试将纯Transformer结构引入到CV的基本任务--图像分类中。自 VIT 被提出以来,已经有许多改进和变种出现,如 Swin Transformer、

2025-02-16 15:31:43 683

原创 transformer

seq2seq 模型是一种基于【 Encoder-Decoder】(编码器-解码器)框架的神经网络模型,广泛应用于自然语言翻译、人机对话等领域。目前,【seq2seq+attention】(注意力机制)已被学者拓展到各个领域。seq2seq于2014年被提出,注意力机制于2015年被提出,两者于2017年进入疯狂融合和拓展阶段。在NLP任务中,我们通常会遇到不定长的语言序列,比如机器翻译任务中,输入可能是一段不定长的英文文本,输出可能是不定长的中文或者法语序列。当遇到输入和输出都是不定长的序列时。

2025-02-16 15:30:17 1107

原创 基于LSTM的情感分析

定义获取字典大小的函数# 学习率lr = 1e-4# 训练轮次。

2025-02-16 15:09:12 237

原创 搜狗拼音输入法自定义短语设置

输入法自定义短语设置

2025-02-14 15:44:20 187

原创 LSTM变种模型

双向长短期记忆网络(BiLSTM是一种扩展自长短期记忆网络(LSTM)的结构,旨在解决传统LSTM模型只能考虑到过去信息的问题。BiLSTM在每个时间步同时考虑了过去和未来的信息,从而更好地捕捉了序列数据中的双向上下文关系。BiLSTM的创新点在于引入了两个独立的LSTM层,一个按正向顺序处理输入序列,另一个按逆向顺序 处理输入序列。这样,每个时间步的输出就包含了当前时间步之前和之后的信息,进而使得模型能够更好地理解序列数据中的语义和上下文关系。正向传递输入序列按照时间顺序被输入到第一个。

2025-02-12 13:00:57 761

原创 循环神经网络

长短期记忆网络(Long Short-Term Memory,LSTM)是一种特别设计来解决长期依赖问题的循环神经网络(RNN)架构。在处理序列数据,特别是长序列数据时,LSTM展现出其独特的优势,能够有效地捕捉和记忆序列中的长期依赖性。这一能力使得LSTM在众多领域,如自然语言处理、语音识别、时间序列预测等任务中,成为了一个强大且广泛使用的工具。LSTM的核心思想是引入了称为“细胞状态”(cell state)的概念,该状态可以在时间步长中被动态地添加或删除信息。LSTM单元由三个关键的门控机制组成。

2025-02-11 13:09:36 1588

原创 python知识阶段小练习

一、单项选择题(每题2分,共50分)1.数据结构中,线性结构包括以下哪些?A. 数组、链表、栈、队列B. 树、二叉树、堆、图C. 哈希表、B树、B+树D. 树、数组、哈希表2. 给定Python字典d = {'a': 1, 'b': 2, 'c': 3},以下哪个表达式的结果是一个包含字典所有值的列表?D. list(d)3.在Python中,NumPy数组的元素类型必须是什么?A. 异质的B. 同质的C. 可以是任意类型D. 只能是整数类型。

2025-02-06 11:00:22 983

原创 NLP知识点

自然语言处理(Natural Language Processing,简称)是人工智能和语言学领域的一个分支,它涉及到的相互作用。它的主要目标是让计算机能够理解、解释和生成人 类语言的数据。结合了计算机科学、人工智能和语言学的技术和理论,旨在填补人与机器之间的交 流隔阂。总结:人类语言与计算机语言之间的互通。

2025-02-06 10:59:40 830

原创 可变性卷积的认识

这种固定的几何结构对空间上存在复杂变形(如旋转、缩放、非刚性变形等)的目标存在。对于 N 大小的卷积核(如 3 x 3 的核 N=9),需要生成 N 个偏移向量。(offsets),灵活应对几何变形,从而更好的捕捉和建模物体细节。偏移向量包含 x 和 y 两个方向,因此偏移量的维度是 2 x N。:卷积核第 n 个位置的偏移量,它通过额外的卷积层动态学习得到。通过卷积生成的偏移量,用于指导后续的可变形卷积如何“变形”。最终结合偏移量后,在输入特征图上进行自适应采样的卷积操作。可变形卷积的核心思想是引入。

2025-01-06 20:18:35 932

原创 注意力机制

局部特征向量,s表示特征图层数:为VGG不同层级的局部特征向量,将FC-1, 512的输出 G 视作全局特征,同时移除FC-2, 10层。接收和 G 作为输入,计算出注意力权重图(Attention map),挖掘特征之间的关系。Attention map作用于的每个channel得到 Weighted local feature。把各个层级下的进行连接操作后得到最后将送入全连接层FC-2, 10进行分类。

2025-01-06 18:40:50 961

原创 YOLO系列的学习

更快更简单:可达到45fps,远高于Faster R-CNN系列,轻松满足视频目标检测。避免产生背景错误:YOLO区域选择阶段是对整张图进行输入,上下文充分利用,不易出现错误背景信息。IOU损失定义如下:交集越大,损失越小,解决了大目标对小目标的影响YOLO11是YOLO新版本系列,在速度和精度上进行了改进。它采用更先进的网络结构和训练技巧,支持多种检测任务,包括目标检测和跟踪、实例分割、图像分类和姿态估计等。同时YOLO11优化了推理速度,使其在实时应用中表现更佳。

2025-01-03 19:39:44 774

原创 目标检测初始

1.在目标检测中,目标框会标注一个置信度(Confidence Score),通常指的是模型对于预测结果的置信程度。(Non-maximum suppression, NMS)是目标框后处理方法,是非常重要的一个环节。VOC2007: 9963张图,24640个标注目标。出来的,代表着模型对该预选框的信心(可靠程度)。结果,比如检测出来的各个目标有多个目标框怎么搞?VOC2012: 23080图片,54900目标。3.上图最终输出的目标框计算过程如下(目标,检索出来20个目标框(ID)

2025-01-03 19:21:14 930

原创 python环境中阻止相关库的自动更新

注意:这种方法只能避免自动更新,但如果在安装其他库时,pinned中规定的版本太低,不满足你正在安装的库时,正在安装的库会将pinned中规定号的版本更新为所满足的版本,此时为了解决这个问题,需要找到彼此之间可以互相兼容的不同库方可解决版本间不兼容的问题。

2024-12-24 18:23:18 368

原创 模型优化和迁移学习

ONNX的规范及代码主要由微软,亚马逊 ,Face book 和 IBM等公司共同开发,以开放源代码的方式托管在Github上。这意味着,为了正确地处理字节流,发送方和接收方必须就数据格式达成一致,或者在字节流中嵌入额外的信息来描述数据结构(如使用特定的文件格式或协议)。例如,当处理图像文件时,不同的图像格式(如JPEG、PNG等)会有不同的方式来组织字节流中的信息。训练完成后,在wandb中观察到,整体的准确率稳定上升,但是效果不是很好,此时应该在原训练好的权重参数基础下继续训练。

2024-12-17 19:40:12 829

原创 kaggle的注册教程(数据资源获取网站)

或者。

2024-12-09 17:11:12 465

原创 深度学习之视觉处理

卷积神经网络是深度学习在计算机视觉领域的突破性成果。在计算机视觉领域, 往往我们输入的图像都很大,使用全连接网络的话,计算的代价较高。另外图像也很难保留原有的特征,导致图像处理的准确率不高。卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有网格状结构数据的深度学习模型。最初,CNN主要应用于计算机视觉任务,但它的成功启发了在其他领域应用,如自然语言处理等。卷积神经网络(Convolutional Neural Network)是含有卷积层。

2024-12-04 11:46:24 1354

原创 深度学习开端知识

在使用Torch构建网络模型时,每个网络层的参数都有默认的初始化方法,同时还可以通过以上方法来对网络参数进行初始化。当输出层使用softmax多分类时,使用交叉熵损失函数;当输出层使用sigmoid二分类时,使用二分类交叉熵损失函数, 比如在逻辑回归中使用;当功能为线性回归时,使用smooth L1损失函数或均方差损失-L2 loss;梯度下降算法通过不断更新参数来最小化损失函数,是反向传播算法中计算权重调整的基础。

2024-12-02 19:12:40 1155

原创 PYTORCH基础语法知识

PyTorch是一个基于Python的深度学习框架,它提供了一种灵活、高效、易于学习的方式来实现深度学习模型。PyTorch最初由Facebook开发,被广泛应用于计算机视觉、自然语言处理、语音识别等领域。PyTorch使用张量(tensor)来表示数据,可以轻松地处理大规模数据集,且可以在GPU上加速。PyTorch提供了许多高级功能,如自动微分(automatic differentiation)、自动求导(automatic gradients)

2024-11-26 20:20:21 1092

原创 机器学习知识点

机器学习

2024-11-26 17:35:50 1148

原创 页面框架组件与数据库

PySimpleGUI 是一个用于简化 GUI 编程的 Python 包,它封装了多种底层 GUI 框架(如 tkinter、Qt、WxPython 等),提供了简单易用的 API。PySimpleGUI 包含了大量的控件(也称为小部件或组件),这些控件可以帮助你快速构建用户界面。

2024-11-06 16:23:24 282

原创 face_recognition(人脸识别)

是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。

2024-11-05 16:16:55 2221

原创 图像预处理_02

通过这种方式,高斯滤波可以有效地减少图像中的噪声,并保留图像的整体特征。这样,像素点的最终值将由它的邻域像素根据这两个权重的组合来计算得出,从而平滑图像的同时保留边缘信息。1.高斯滤波是图像处理中常用的一种平滑滤波方法,其主要作用是去除图像中的噪声,并减少图像细节,以实现图像的平滑处理。但是,单独依靠低阈值来识别边缘是不够的,因为它可能会导致很多虚假的边缘被识别出来,特别是那些由于噪声引起的边缘。1.闭运算是先膨胀后腐蚀的过程,常用于填充前景物体中的小洞,平滑较大物体的边界以及连接邻近的物体。

2024-11-05 10:18:24 1221

原创 图像预处理_01

1。在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。

2024-11-05 10:16:07 1186

原创 OpenCV基础知识

1.OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。是 OpenCV 库中的一个函数,用于创建一个命名窗口,以便在该窗口中显示图像或进行其他图形操作。这个函数在处理图像和视频时非常有用,尤其是在开发基于图像处理的应用程序时。3.opencv重要性。

2024-10-31 19:22:55 5073

原创 Python包和模块

1.一个.py 文件就是一个模块2.模块是含有一系列数据函数类等的程序①作用把相关功能的函数等放在一起有利于管理,有利于多人合作开发②模块的分类模块名如果要给别的程序导入,则模块名必须是 标识符内置模块(在python3 程序内部,可以直接使用)标准库模块(在python3 安装完后就可以使用的 )第三方模块(需要下载安装后才能使用)自定义模块(用户自己编写)3.实例'''小张写了一个模块,内部有两个函数,两个字符串... 此处省略 200字'''​'''此函数用来求和。

2024-10-30 18:36:38 1059

原创 数据结构基础知识点

1.数据结构是计算机科学中的一个核心概念,它是指数据的组织、管理和存储方式,以及数据元素之间的关系。数据结构通常用于允许高效的数据插入、删除和搜索操作。

2024-10-29 18:45:24 1086

原创 Matplotlib基础知识

1.Matplotlib 库:是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy ndarray 数组来绘制 2D 图像,它使用简单、代码清晰易懂2.Matplotlib 图形组成:(1)Figure:指整个图形,您可以把它理解成一张画布,它包括了所有的元素,比如标题、轴线等(2)Axes:绘制 2D 图像的实际区域,也称为轴域区,或者绘图区(3)Axis:指坐标系中的垂直轴与水平轴,包含轴的长度大小(图中轴长为 7)、轴标签(指 x 轴,y轴)和刻度标签。

2024-10-23 17:59:48 1125

原创 NumPy的基础知识

1.NumPy 的全称是“ Numeric Python”,它是 Python 的第三方扩展包,主要用来计算、处理一维或多维数组2.在数组算术计算方面, NumPy 提供了大量的数学函数3.NumPy 的底层主要用 C语言编写,因此它能够高速地执行数值计算4.NumPy 还提供了多种数据结构,这些数据结构能够非常契合的应用在数组和矩阵的运算上。

2024-10-21 16:58:38 977

原创 Python进阶知识3

然后,每次调用生成器的 next() 方法或使用 for 循环进行迭代时,函数会从上次暂停的地方继续执行,直到再次遇到 yield 语句。2.装饰器的作用:在不修改被装饰的函数的源代码,不改变被装饰的函数的调用方式的情况下添加或改变原函数的功能。这样的行为正是Python装饰器的特性之一:装饰器可以修改函数的行为,甚至完全替换被装饰的函数。1.含有yield 语句的函数是生成器函数,此函数调用回返回一个生成器对象,生成器也是可迭代对象。1.什么是装饰器:装饰器是一个函数,主要作用是来用包装另一个函数或类。

2024-10-18 20:09:44 1479

原创 Python进阶知识2

1.类是创建对象的 ”模板”。数据成员:表明事物的特征。相当于变量方法成员:表明事物的功能。相当于函数通过class关键字定义类。类的创建语句语法:class 类名 (继承列表):实例属性(类内的变量) 定义实例方法(类内的函数method) 定义类变量(class variable) 定义类方法(@classmethod) 定义静态方法(@staticmethod) 定义"""python类和对象"""# 定义类a = 10name = "旺财变量"

2024-10-18 20:07:56 1095

原创 Python进阶知识1

1.什么是函数:函数是可以重复执行的语句块,可以重复调用2.作用:用于封装语句块, 提高代码的重用性。函数是面向过程编程的最小单位1.语法def 函数名(形参名1=默认实参1, 形参名2=默认实参2, ... ):语句块2.说明:缺省参数即默认实参,必须自右向左依次存在(即,如果一个参数有缺省参数,则其右侧的所有参数都必须有缺省参数)3.示例print(a)print(b)print(c)print(d)print(myadd4(1, 2, 3))#默认参数的值可以被更改。

2024-10-16 22:30:08 788

原创 Python基础知识9

1.Python 推导式是一种独特的数据处理方式,可以从一个数据序列构建另一个新的数据序列的结构体。

2024-10-15 19:36:23 347

原创 概率相关知识点归纳

1.基本事件:基本事件是指试验中不可再分的最简单的事件。每个基本事件代表一个单一的可能结果。2.复合事件:复合事件是由多个基本事件组合而成的事件。复合事件代表多个可能结果的集合。3.必然事件:必然事件是指在试验中一定会发生的事件。必然事件的概率为1。在样本空间中,必然事件包括了样本空间中的所有样本点。4.不可能事件:不可能事件是指在试验中绝对不会发生的事件。不可能事件的概率为0。通常用∅表示。5.样本空间:样本空间是指试验中所有可能结果的集合。样本空间通常用大写字母 Ω 表示。

2024-10-14 19:10:59 826

原创 向量基础知识

1.设 A 是一个 n×n 的方阵。如果存在一个非零列向量v 和一个标量λ,使得:那么 λ 称为矩阵 A的特征值,v 称为对应于特征值 λ 的特征向量。注:λ可以为0,而v不能为0,并且v是列向量。因为A是n维矩阵,如果v是行向量,则维数是1xn,不满足矩阵相乘。将定义中的等式移项,得到:由于v是非零列向量,相当于求上述方程的非零解,由方程有非零解的充要条件是行列式为0的定理可知:说明:(A-λE):特征矩阵;|A-λE|:特征行列式或特征多项式;|A-λE|=0:特征方程。

2024-10-14 14:56:16 1243

原创 矩阵基础知识

1.矩阵是由一组数按照矩形排列而成的数表。矩阵通常用大写字母表示,例如 AA、BB等。矩阵中的每个数称为矩阵的元素或元。一个 m×n的矩阵 AA可以表示为:其中 aij表示矩阵 A中第i行第j列的元素。

2024-10-14 12:51:53 2842 1

原创 高数导数积分知识点归纳

x的取值范围。

2024-10-13 15:55:00 1237

原创 Python嵌套数组练习

【代码】Python嵌套数组练习。

2024-10-13 10:52:53 346

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除