Crypto 4

crypto作业

P1.py源码:
from Crypto.Util.number import *

flag = b'NSSCTF{******}'#所求原文

p = getPrime(512)#随机生成一个素数(512位-二进制位数)
q = getPrime(512)
n = p*q
e = 65537
phi = (p-1)*(q-1)

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'p = {p}')
print(f'q = {q}')
print(f'e = {e}')
print(f'c = {c}')
'''
p = 10554915510546378513140074459658086644656654144905337809416976066414771647836950941616441505897207397834928781511863699153349798682451297889979721668885951
q = 8246403321715011123191410826902524505032643184038566851264109473851746507405534573077909160292816825514872584170252311902322051822644609979417178306809223
e = 65537
c = 40005881669517895877352756665523238535105922590962714344556374248977905431683140065629966778249773228248201807844489945346731806741025157651474530811920115794270396320935022110691338083709019538562205165553541077855422953438117902279834449006455379382431883650004540282758907332683496655914597029545677184720
'''

观察代码,很明显是rsa加密代码,我们已知p,q,e,c,编写解密代码即可

``

from Crypto.Util.number import *
import gmpy2

p = 10554915510546378513140074459658086644656654144905337809416976066414771647836950941616441505897207397834928781511863699153349798682451297889979721668885951
q = 8246403321715011123191410826902524505032643184038566851264109473851746507405534573077909160292816825514872584170252311902322051822644609979417178306809223
e = 65537
c = 40005881669517895877352756665523238535105922590962714344556374248977905431683140065629966778249773228248201807844489945346731806741025157651474530811920115794270396320935022110691338083709019538562205165553541077855422953438117902279834449006455379382431883650004540282758907332683496655914597029545677184720

n = p * q
phi = (p - 1) * (q - 1)
d = gmpy2.invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))#这里记得转换一下

得到答案:b’NSSCTF{now!you_know_rsa}’

P2.py源码:

``

from Crypto.Util.number import *

flag = b'NSSCTF{******}'

p = getPrime(256)
q = getPrime(256)
n = p*q
e = 65537
phi = (p-1)*(q-1)

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')

'''
n = 7382582015733895208810490097582153009797420348201515356767397357174775587237553842395468027650317457503579404097373070312978350435795210286224491315941881
e = 65537
c = 6511001389892474870028836129813814173158254564777610289284056550272120510686249909340499673868720839756059423749304765055919251717618117507007046973023557
'''

只给出了n,e,c,需要p和q,这时候就需要对n进行分解

rsa分解n的链接:http://factordb.com/index.php?query=322831561921859

分解后

p=70538125404512947763739093348083497980212021962975762144416432920656660487657
q=104660876276442216612517835199819767034152013287345576481899196023866133215633

同样使用上一题的解密代码即可解出答案。

得出结果:b’NSSCTF{factordb_is_useful}’

P3.py源码:

``

from Crypto.Util.number import *

flag = b'NSSCTF{******}'

p = getPrime(128)
q = getPrime(128)
n = p*q
e = 65537
phi = (p-1)*(q-1)

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')

'''
n = 53690629441472827148854210396580805205350972614395425306316047967905824330731
e = 65537
c = 22130296334673852790451396673112575082637108306697684532954477845025885087040
'''

同第二题一样,这里不再说明。

得出结果:b’NSSCTF{yafu!yafu!yafu!}’

P4.py源码:

``

from Crypto.Util.number import *
import gmpy2
flag = b'NSSCTF{******}'

p = getPrime(512)
q = gmpy2.next_prime(p)
n = p*q
e = 65537
phi = (p-1)*(q-1)

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')

'''
n = 115637000420176820831322601039129424406844427046456738651883381559357542765613732363445112111006849040385859313572091386802534464534403117787314180179562651607533039692795522388596550968316951090748054495960090527479954143448774136390568881020918710834542819900918984139672802889774720153267841255456602500057
e = 65537
c = 98161406745910866780822530171878255235776133393411573803496865047700715941955255328757920065032397556905095591171977170479344602512244671081108703687450560269408412671849929423399172588599903975793985819498354819305128607934552101433664794909855378636055525016664559476808490723554481335856183927702549281730
'''

代码中有不认识的函数,查询后的结果:

gmpy2.next_prime() 函数用于生成下一个质数。该函数接受一个整数参数 n,并返回大于 n 的下一个质数。

那么现在的问题就是如何把p和q求出来

我先试了一下用上一题的n分解,果然不行,n太大了所以无法分解出来

陷入困局

一开始想着自己编写代码试试看能不能求出来,因为p和q大概率相差不大,但果然还是不太行。

经过提点,将n进行开根号得到一个数,这个数会与p相差不大,于是先判断是否为素数,如果不是就取下一个素数(next_prime),再用n // p求q即可(需要注意的是这里不能用q = next_prime§求解,因为q有可能是p的前一个素数),然后按照常规解法即可

解密代码:

``

from Crypto.Util.number import *
from gmpy2 import *

n =115637000420176820831322601039129424406844427046456738651883381559357542765613732363445112111006849040385859313572091386802534464534403117787314180179562651607533039692795522388596550968316951090748054495960090527479954143448774136390568881020918710834542819900918984139672802889774720153267841255456602500057
e = 65537
c = 98161406745910866780822530171878255235776133393411573803496865047700715941955255328757920065032397556905095591171977170479344602512244671081108703687450560269408412671849929423399172588599903975793985819498354819305128607934552101433664794909855378636055525016664559476808490723554481335856183927702549281730

t=iroot(n,2)[0]
print(is_prime(t))
p = next_prime(t)
for i in range(1,10):#用while循环可能会更好一些
    print("-----------------------------------------")
    q = n // p
    phi = ( p - 1 ) * ( q - 1 )
    d = invert(e,phi)
    m=pow(c,d,n)
    print(long_to_bytes(m))
    p=q

得出结果:b’NSSCTF{so_closed}’

p5.py源码:

``

from Crypto.Util.number import *
import gmpy2
flag = b'NSSCTF{*****************************************}'

p = getPrime(512)
q = gmpy2.next_prime(p - getPrime(256))
n = p*q
e = 65537
phi = (p-1)*(q-1)
m = bytes_to_long(flag)
c = pow(m, e, n)

print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')
# '''
# n = 148841588941490812589697505975986386226158446072049530534135525236572105309550985274214825612079495930267744452266230141871521931612761645600600201983605957650711248808703757693378777706453580124982526368706977258199152469200838211055230241296139605912607613807871432800586045262879581100319519318390454452117
# e = 65537
# c = 69038543593219231496623016705860610154255535760819426453485115089535439537440188692852514795648297200067103841434646958466720891016026061658602312900242658759575613625726750416539176437174502082858413122020981274672260498423684555063381678387696096811975800995242962853092582362805345713900308205654744774932
# '''

关键还是如何把n分解出来,使用工具即可分解出来,得到:


p= 12200065120379104459630695224710181907653841921369674962900093531339421658815375891425102591939094029941691738405035324548070063226677838530633694428729829
q = 12200065120379104459630695224710181907653841921369674962900093531339421658815305905822146210878434959851438079877557401145694064756239882458467901042367473

然后正常求解即可。

得到结果:b’NSSCTF{fermat_factor}’

p6.py源码:

``

from Crypto.Util.number import *
flag = b'NSSCTF{******}'

p1 = getPrime(512)
q = getPrime(512)
p2 = getPrime(512)

n1 = p1*q
n2 = p2*q

e = 65537

m = bytes_to_long(flag)
c1 = pow(m, e, n1)
c2 = pow(m, e, n2)

print(f'n1 = {n1}')
print(f'n2 = {n2}')
print(f'e = {e}')
print(f'c1 = {c1}')
print(f'c2 = {c2}')
'''
n1 = 143348646254804947818644803938588739009782265465565896704788366218178523508874903492905378927641178487821742289009401873633609987818871281146199303052141439575438691652893995423962176259643151111739185844059243400387734688275416379337335777994990138009973618431459431410429980866760075387393812720247541406893
n2 = 138110854441015362783564250048191029327770295545362614687087481715680856350219966472039006526758450117969049316234863489558254565946242898336924686721846675826468588471046162610143748100096038583426519355288325214365299329095841907207926280081868726568947436076663762493891291276498567791697978693639037765169
e = 65537
c1 = 54957154834913405861345262613986460384513988240935244315981524013378872930144117440787175357956479768211180412158274730449811947349624843965933828130932856052315165316154486515277625404352272475136003785605985702495858150662789554694910771308456687676791434476722168247882078861234982509648037033827107552029
c2 = 122221335585005390437769701090707585780333874638519916373585594040154234166935881089609641995190534396533473702495240511296379249872039728112248708182969185010334637138777948970821974238214641235158623707766980447918480715835847907220219601467702961667091318910582445444058108454023108157805147341928089334736
'''

N不互素

代码中有两个n:n1,n2,他俩有一个公约数q,使用gcd()函数即可求出公约数,然后在p1和p2中选一个求出再求flag即可。解密代码如下:

``

from Crypto.Util.number import *
import gmpy2
import math
n1 = 143348646254804947818644803938588739009782265465565896704788366218178523508874903492905378927641178487821742289009401873633609987818871281146199303052141439575438691652893995423962176259643151111739185844059243400387734688275416379337335777994990138009973618431459431410429980866760075387393812720247541406893
n2 = 138110854441015362783564250048191029327770295545362614687087481715680856350219966472039006526758450117969049316234863489558254565946242898336924686721846675826468588471046162610143748100096038583426519355288325214365299329095841907207926280081868726568947436076663762493891291276498567791697978693639037765169
e = 65537
c1 = 54957154834913405861345262613986460384513988240935244315981524013378872930144117440787175357956479768211180412158274730449811947349624843965933828130932856052315165316154486515277625404352272475136003785605985702495858150662789554694910771308456687676791434476722168247882078861234982509648037033827107552029
c2 = 122221335585005390437769701090707585780333874638519916373585594040154234166935881089609641995190534396533473702495240511296379249872039728112248708182969185010334637138777948970821974238214641235158623707766980447918480715835847907220219601467702961667091318910582445444058108454023108157805147341928089334736
q = math.gcd(n1,n2)
p1 = n1 // q
phi = (p1 - 1) * (q - 1)
d = gmpy2.invert(e,phi)
m=pow(c1,d,n1)
print(long_to_bytes(m))

得到结果:b’NSSCTF{no_share_number}’

p7.py源码:

``

from Crypto.Util.number import *

flag = b'NSSCTF{******}' + b'1'*170

p = getPrime(512)
q = getPrime(512)
r = getPrime(512)
n = p*q*r
e = 65537
phi = (p-1)*(q-1)*(r-1)

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'p = {p}')
print(f'q = {q}')
print(f'r = {r}')
print(f'e = {e}')
print(f'c = {c}')

'''
p = 10666139331774428325755287635566473140804481321882464031499529816800186578792308674238646794969384836340484775213796013129603472328582005363876462361316357
q = 8419311673449738061914489023962717718536471719688567807316495262754711350004888752049108347226115000749280146228195893953964759818878155006622123533942989
r = 12875078327453384158245832541544758526474680184252540739652077682353277702054275525591573258723948221345537075374635382175740236093131628077747126356403959
e = 65537
c = 424552463648937499189041230155623101311087334789253159440707211761796081289342164253743235182597460622581134089949035117444838205449163269030784233435435681797627188717450074808905561404960693227573181548281296514743775615606388692910356320667720308219275107443303501165027740512539959960217657836317351146520079753390346207659007421416917274795119021374032194294225350901136669304225010974617136606299060486198480556729770211945777266366417547752798441211059402
'''

观察代码可知n由p,q,r三个数得出,对应的欧拉函数也有改变,其余不变,则解密的n与phi也随之改变,即可求出答案。解密代码:

``

from Crypto.Util.number import *
import gmpy2
import math
p = 10666139331774428325755287635566473140804481321882464031499529816800186578792308674238646794969384836340484775213796013129603472328582005363876462361316357
q = 8419311673449738061914489023962717718536471719688567807316495262754711350004888752049108347226115000749280146228195893953964759818878155006622123533942989
r = 12875078327453384158245832541544758526474680184252540739652077682353277702054275525591573258723948221345537075374635382175740236093131628077747126356403959
e = 65537
c = 424552463648937499189041230155623101311087334789253159440707211761796081289342164253743235182597460622581134089949035117444838205449163269030784233435435681797627188717450074808905561404960693227573181548281296514743775615606388692910356320667720308219275107443303501165027740512539959960217657836317351146520079753390346207659007421416917274795119021374032194294225350901136669304225010974617136606299060486198480556729770211945777266366417547752798441211059402
n=p*q*r
phi = (p-1)*(q-1)*(r-1)
d = gmpy2.invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))

得到结果:b’NSSCTF{3th_number!}

p8.py源码:
from Crypto.Util.number import *

flag = b'NSSCTF{******}' + b'1'*100

p = getPrime(256)
q = getPrime(256)
n = (p**3) * q
e = 65537
phi = (p-1)*(q-1)

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'p = {p}')
print(f'q = {q}')
print(f'e = {e}')
print(f'c = {c}')

'''
p = 80505091208742938705306670241621545375764148093711243653439069254008824979403
q = 67599990875658931406915486208971556223245451500927259766683936131876689508521
e = 65537
c = 7958690969908064264211283192959937430539613460471121984649054121171267262097603091410178042319139582772142226087020110084551158367679146616732446561228522673699836019156243452069036383047309578614662564794584927846163157472211089368697387945469398750955336949678910159585015004994620777231073804301249774041
'''

根据n = (p**3) * q求其对应的欧拉函数*(小于等于n的正整数中与n 不互质的数的数目)*即可求出答案

在这里插入图片描述

可以参考一篇欧拉函数的博客:
<http://t.csdnimg.cn/rOOmq >

解密代码:

``

from Crypto.Util.number import *
from gmpy2 import *

p = 80505091208742938705306670241621545375764148093711243653439069254008824979403
q = 67599990875658931406915486208971556223245451500927259766683936131876689508521
e = 65537
c = 7958690969908064264211283192959937430539613460471121984649054121171267262097603091410178042319139582772142226087020110084551158367679146616732446561228522673699836019156243452069036383047309578614662564794584927846163157472211089368697387945469398750955336949678910159585015004994620777231073804301249774041

n = (p**3) * q
phi = (p-1)*p*p*(q-1)
d = invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))

得到结果:b’NSSCTF{more_exp}

p9.py源码:
from Crypto.Util.number import *

flag = b'NSSCTF{******}'

p = getPrime(512)
q = getPrime(512)

e = 65537
while True:
    r = 2*getPrime(100)*e+1
    if isPrime(r):
        break

n = p*q*r

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'p = {p}')
print(f'q = {q}')
print(f'r = {r}')
print(f'e = {e}')
print(f'c = {c}')

'''
p = 7478755670255767435237487693415479182290330775502792675052667363676831056436638619069277770540533350723045234676443621124912287506103439704868369839725279
q = 9232828888049557325429111621080998490274442347556398052322580869768941301413255711626092627273543579067597113958627672298942570149816938335701615759283713
r = 102909133680612532601801231903654039
e = 65537
c = 142893174944324070830219394465469685943669308818639857030565389839224452373848570577201378981080333784852764502832587008270072323948511579823852437852643609820245476634896477031076952735298279618952398460203032125853063235638358942643559551563899381032067185778629120272032518475352761100115057449043142848203976076694124978394099839339406197
'''

这道题一开始用常规思路求解,结果invert()函数报错,于是采用e和phi不互素的情况进行求解,但是

gcd(e,phi)=t=63357

那么invert(e//t,phi)=1

好吧,还是不太清楚,先放置一下(后面会回来补上的)

嗨嗨嗨,我又回来了(这道题其实很简单,是我想复杂了)
因为invert(e//t,phi)=1,很显然这样解是不对的
那么就可以由根据在这里插入图片描述上面的式子是我们的常规解法,由常规解法可以推到下面的式子,那么现在最关键的问题就是这到底是如何推出的(也是我之前一直困惑的地方)。
其实很简单:

e * d - 1 = k(p-1)(q-1)
k1 = k(q-1)
e * d - 1 = k1(p-1)即e * d ≡ 1 mod (p - 1)
同理可以得到 e * d ≡ 1 mod ( q - 1 )

那么对应的解密函数:m = c ^ d mod n
中的n也相应改变: m = c ^ d mod p (由于上面求d所用的是p的欧拉函数,所以这里需要改变)

解密代码:

from Crypto.Util.number import *
from gmpy2 import *
p = 7478755670255767435237487693415479182290330775502792675052667363676831056436638619069277770540533350723045234676443621124912287506103439704868369839725279
q = 9232828888049557325429111621080998490274442347556398052322580869768941301413255711626092627273543579067597113958627672298942570149816938335701615759283713
r = 102909133680612532601801231903654039
e = 65537
c = 142893174944324070830219394465469685943669308818639857030565389839224452373848570577201378981080333784852764502832587008270072323948511579823852437852643609820245476634896477031076952735298279618952398460203032125853063235638358942643559551563899381032067185778629120272032518475352761100115057449043142848203976076694124978394099839339406197

n = p * q * r
phi = (p-1)*(q-1)*(r-1)
print(gcd(e,phi))
print(gcd(e,p-1))
print(gcd(e,q-1))
print(gcd(e,r-1))
d=invert(e,q-1)
m=pow(c,d,q)
print(long_to_bytes(m))

得出结果:b’NSSCTF{no_inverse!but_decrypt}’

p10.py源码:
from Crypto.Util.number import *

flag = b'NSSCTF{******}'

p = getPrime(512)
q = getPrime(512)

e = 65537*2

n = p*q

m = bytes_to_long(flag)

c = pow(m, e, n)

print(f'p = {p}')
print(f'q = {q}')
print(f'e = {e}')
print(f'c = {c}')

'''
p = 9927950299160071928293508814174740578824022211226572614475267385787727188317224760986347883270504573953862618573051241506246884352854313099453586586022059
q = 9606476151905841036013578452822151891782938033700390347379468858357928877640534612459734825681004415976431665670102068256547092636766287603818164456689343
e = 131074
c = 68145285629092005589126591120307889109483909395989426479108244531402455690717006058397784318664114589567149811644664654952286387794458474073250495807456996723468838094551501146672038892183058042546944692051403972876692350946611736455784779361761930869993818138259781995078436790236277196516800834433299672560
'''

在尝试解得过程中,invert()报错,那么很明显是e和phi不互素,则求出gcd(e,phi),再相应改变一下求解即可。
推理过程:
在这里插入图片描述

解密代码:

from Crypto.Util.number import *
import gmpy2
import math
p = 9927950299160071928293508814174740578824022211226572614475267385787727188317224760986347883270504573953862618573051241506246884352854313099453586586022059
q = 9606476151905841036013578452822151891782938033700390347379468858357928877640534612459734825681004415976431665670102068256547092636766287603818164456689343
e = 131074
c = 68145285629092005589126591120307889109483909395989426479108244531402455690717006058397784318664114589567149811644664654952286387794458474073250495807456996723468838094551501146672038892183058042546944692051403972876692350946611736455784779361761930869993818138259781995078436790236277196516800834433299672560

n = p * q
phi = (p - 1) * (q - 1)
t=math.gcd(e,phi)
print(t)
dt = gmpy2.invert(e//t,phi)
mt=pow(c,dt,n)
m=gmpy2.iroot(mt,t)[0]
print(long_to_bytes(m))

得出结果:b’NSSCTF{inverse_and_root}’

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值