问题描述
将一个数N分为多个正整数之和,即N=a1+a2+a3+…+ak,定义M=a1*a2*a3*…*ak为N的潜能。
给定N,求它的潜能M。
由于M可能过大,只需求M对5218取模的余数。
输入格式
输入共一行,为一个正整数N。
样例:10
输出格式
输出共一行,为N的潜能M对5218取模的余数。
样例:36
这道题一开始我首先想到的就是dfs+二分,很明显到最后数据大的时候会超时。
但后来用几个案例分解发现,其实分到最后,就是一个2和3的组合,取3的个数越多,乘积越大。
于是到最后就分到了以下三种情况
了解了这三种情况,就有了后来的思路,运用快速幂加快求幂的速度,再处理特殊情况,就得到最后的答案啦!
import sys
def fast(x,y,ans,m): # 快速幂模板,做了一点修改,ans由三种情况传入
while y != 0:
if y & 1:
ans = ans*x%m
x = x * x%m
y >>= 1
return ans
n = int(input())
m = 5218
if n == 1: # 处理特殊情况
print(1)
sys.exit(0)
if n % 3 == 0:
print(fast(3, n // 3, 1, m))
if n % 3 == 1:
print(fast(3, n // 3 - 1, 4, m))
if n%3 == 2:
print(fast(3, n // 3, 2, m))