蓝桥杯 数的潜能 Python

该文章探讨了一种计算正整数潜能的问题,其中潜能是数的分解乘积。作者发现,对于大数N,其潜能主要由2和3的组合决定。通过快速幂优化计算,针对N对3的余数不同(0,1,2)处理特殊情况,得出对5218取模的潜能值。
摘要由CSDN通过智能技术生成
问题描述
  将一个数N分为多个正整数之和,即N=a1+a2+a3+…+ak,定义M=a1*a2*a3*…*ak为N的潜能。
  给定N,求它的潜能M。
  由于M可能过大,只需求M对5218取模的余数。
输入格式
  输入共一行,为一个正整数N。
样例:10
输出格式
  输出共一行,为N的潜能M对5218取模的余数。
样例:36

这道题一开始我首先想到的就是dfs+二分,很明显到最后数据大的时候会超时。

但后来用几个案例分解发现,其实分到最后,就是一个2和3的组合,取3的个数越多,乘积越大。

于是到最后就分到了以下三种情况


了解了这三种情况,就有了后来的思路,运用快速幂加快求幂的速度,再处理特殊情况,就得到最后的答案啦!

import sys
def fast(x,y,ans,m):   # 快速幂模板,做了一点修改,ans由三种情况传入
    while y != 0:
        if y & 1:
            ans = ans*x%m
        x = x * x%m
        y >>= 1
    return ans
n = int(input())
m = 5218
if n == 1:  # 处理特殊情况
    print(1)
    sys.exit(0)
if n % 3 == 0:
    print(fast(3, n // 3, 1, m))
if n % 3 == 1:
    print(fast(3, n // 3 - 1, 4, m))
if n%3 == 2:
    print(fast(3, n // 3, 2, m))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

藤宫博野

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值