数论基础裴蜀定理

裴蜀定理(或贝祖定理,Bézout's identity)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且GCD(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。\n\n推论:\n\n它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.

#include <iostream>

#include <cstring>

#include <algorithm>

 

using namespace std;

//a*b+b*y=gdc(a,b)

int exgcd(int a,int b,int& x,int& y){

    if(b==0){

        x=1,y=0;

        return a;

    }

    int res=exgcd(b,a%b,y,x);

    y-=a/b*x;

    return res;

}

int main()

{

    int n;

    cin>>n;

    while (n -- ){

        int a,b,x,y;

        cin>>a>>b;

        exgcd(a,b,x,y);

        cout<<x<<" "<<y<<endl;

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值