裴蜀定理(或贝祖定理,Bézout's identity)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且GCD(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。\n\n推论:\n\n它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
//a*b+b*y=gdc(a,b)
int exgcd(int a,int b,int& x,int& y){
if(b==0){
x=1,y=0;
return a;
}
int res=exgcd(b,a%b,y,x);
y-=a/b*x;
return res;
}
int main()
{
int n;
cin>>n;
while (n -- ){
int a,b,x,y;
cin>>a>>b;
exgcd(a,b,x,y);
cout<<x<<" "<<y<<endl;
}
}