阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解

目录

Preface

基本粒子群法(Basic particle swarm optimization)

负反馈(Degenerative Feedback)修正

MATLAB代码详解

多峰函数

 参数初始化

迭代过程

结果显示

参考文章

Preface

        粒子群优化Particle Swarm OptimizationPSO),又称微粒群算法,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

基本粒子群法(Basic particle swarm optimization)

        在D维空间,N个粒子组成一个群落X=(X_1,X_2,...X_N),每个粒子位置坐标是D维向量,

X_i=(x_{i1},x_{i2},...x_{iD}),i=1,2,...N,在每个维度上的速度也是D维向量V_i=(v_{i1},v_{i2},...v_{iD}),i=1,2,...D,在迭代过程中,对每一个粒子X_i,保留它迄今为止搜索到的最优位置为个体极值P_i{best}=(p_{i1},p_{i2},...p_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{best}=(g_1,g_2,...g_D),每进行一次迭代,粒子的位置和速度都会更新,更新公式为

x_{ij}(t+1)=x_{ij}(t)+v_{ij}(t),i=1,2,...N,j=1,2,...D,i表示第几个粒子,j表示维度

v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t)),i=1,2,...N,j=1,2,...D

其中w是惯性系数,即前一次迭代速度对后一次的影响系数,p_{ij}-x_{ij}(t)表示个体目前最优极值对搜索的影响,反映了粒子的认知能力,c_1>0gj-x_{ij}(t)表示群体最优极值对个体的影响,反映了粒子的社会性行为,c_2>0,均为正反馈调节。

负反馈(Degenerative Feedback)修正

        在速度更新公式的基础上,引入负反馈调节因子c_3,c_4进行修正。在迭代过程中,对每一个粒子迄今为止搜索到的最差路径为个体极差值,P_i{worst}=(p'_{i1},p'_{i2},...p'_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{worst}=(g'_1,g'_2,...g'_D),修正后的速度更新公式为v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t))+c_3*rand()*(p'_{ij}-x_{ij}(t))+c_4*rand()*(g'_j-x_{ij}(t)),i=1,2,...N,j=1,2,...D,其中

c_3<0,c_4<0,表示负反馈调节,增强了个体的认知能力的社会能力。

MATLAB代码详解

多峰函数

        这是待求极小值的多峰函数

function v=func3(x)
v=((1*cos((1+1).*x(1)+1))+(2*cos((2+1).*x(1)+2))+(3*cos((3+1).*x(1)+3))+...
       (4*cos((4+1).*x(1)+4))+(5*cos((5+1).*x(1)+5))).*((1*cos((1+1).*x(2)+1))+...
       (2*cos((2+1).*x(2)+2))+(3*cos((3+1).*x(2)+3))+(4*cos((4+1).*x(2)+4))+(5*cos((5+1).*x(2)+5)));
end
x=linspace(-10,10,2000);
y=x;
z=meshgrid(x,y);
for i=1:size(x,2)
    for j=1:size(x,2)
        z(i,j)=func3([x(i),y(j)]);
    end
end
mesh(x,y,z);

 参数初始化

clear all; %清除所有变量
close all; %清图
clc; %清屏
N = 100; %群体粒子个数
D = 2; %粒子维数
T = 200; %最大迭代次数
c1 = 1.5; %正反馈调节因子1
c2 = 1.5; %正反馈调节因子2
c3=-0.5;%负反馈调节因子1
c4=-0.5;%负反馈调节因子2
Wmax = 0.8; %惯性权重最大值
Wmin = 0.4; %惯性权重最小值
Xmax = 10; %位置最大值
Xmin = -10; %位置最小值
Vmax = 1; %速度最大值,当更新后速度v>Vmax,取v=Vmax
Vmin = -1; %速度最小值,当更新后速度v<Vmin,取v=Vmin
%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%
x = rand(N,D) * (Xmax-Xmin)+Xmin;
v = rand(N,D) * (Vmax-Vmin)+Vmin;

%%%%%%%%%%%%%初始化个体最优位置最优值以及最差位置最差值%%%%%%%%%%%%%
p = x;
pw=x;
pbest = ones(N,1);
for i = 1:N
    pbest(i) = func3(x(i,:));
end
pworst=pbest;%初始时刻个体最优值也是最差值

%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%
g = ones(1,D);
gw=ones(1,D);
gbest = inf;
gworst=-inf;
for i = 1:N
    if(pbest(i) < gbest)
        g = p(i,:);
        gbest = pbest(i);
    elseif (pbest(i)>gworst)
        gw=p(i,:);
        gworst=pbest(i);
    end
end
gb = ones(1,T);%记录每次迭代最优值

迭代过程

%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%
for i = 1:T
    for j = 1:N

        %%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%
        if (func3(x(j,:)) < pbest(j))
            p(j,:) = x(j,:);
            pbest(j) = func3(x(j,:));

        %%%%%%%%%更新个体最差位置和最差值%%%%%%%%%%%%%
        elseif (func3(x(j,:)) >pworst(j))
            pw(j,:)=x(j,:);
            pworst(j)= func3(x(j,:));
        end

        %%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%
        if(pbest(j) < gbest)
            g = p(j,:);
            gbest = pbest(j);

        %%%%%%%%%%更新最差位置和最差值%%%%%%%%%%%%
        elseif (pworst(j) > gworst)
            gw=p(j,:);
            gworst=pworst(j);
        end

        %%%%%%%%%%%计算动态惯性权重值%%%%%%%%%%%%%%%
        w = Wmax-(Wmax-Wmin)*i/T;%线性递减公式

        %%%%%%%%%%%%更新位置和速度值%%%%%%%%%%%%%%%
        v(j,:) = w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...
            +c2*rand*(g-x(j,:))+c3*rand*(pw(j,:)-x(j,:))+c4*rand*(gw-x(j,:));
        x(j,:) = x(j,:)+v(j,:);

        %%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%
        for ii = 1:D
            if (v(j,ii) > Vmax) | (v(j,ii) < Vmin)
                v(j,ii) = rand * (Vmax-Vmin)+Vmin;
            end
            if (x(j,ii) > Xmax) | (x(j,ii) < Xmin)
                x(j,ii) = rand * (Xmax-Xmin)+Xmin;
            end
        end
    end

    %%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%
    gb(i) = gbest;
end

结果显示

g  %最优个体
gb(end)  %最优值
figure
plot(gb)
xlabel('Iterations');
ylabel('Fitness value');
title('Fitness evolution curve')

参考文章

基本粒子群算法小结及算法实例(附Matlab代码)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: GM模型(Grey Model)是一种基于灰色系统理论的预测模型,它主要适用于数据缺失、样本量较小、数据质量较差的情况下进行预测。GM模型被广泛应用于各个领域的预测和决策,如经济、环境、社会等。 GM模型根据系统的数据特性,将其分为灰色系统和非灰色系统两类。对于灰色系统,其数据缺乏,难以得到准确的数学模型,而非灰色系统则具有充足的数据和明确的数学模型。 GM模型主要包括GM(1,1)模型和GM(2,1)模型两种,其中GM(1,1)模型是最基础的模型,也是最为常用的模型。 GM(1,1)模型的基本思想是通过灰色微分方程对数据进行处理,然后建立灰色预测模型,最后根据模型预测结果得出预测值。GM(1,1)模型的基本步骤包括建立灰色微分方程、构造累加生成序列、进行模型检验和预测。 以下是用Matlab实现GM(1,1)模型的代码示例: % 数据读取 data = [1,3,4,7,11,13,17,20]; % 灰色预测模型 n = length(data); x0 = cumsum(data); z = zeros(1,n-1); for i = 1:n-1 z(i) = (x0(i)+x0(i+1))/2; end B = [-z', ones(n-1,1)]; Y = data(2:end)'; u = B\Y; a = u(1); b = u(2); % 预测结果 f = zeros(1,n); f(1) = data(1); for i = 2:n f(i) = (data(1)-b/a)*(1-exp(a))*(exp(a*(i-1))); end disp(f); ### 回答2: GM模型,即灰色系统模型(Grey Model),是一种针对具有较少数据、无建立精确数学模型或经验模型的情况下,对系统进行预测与分析的方。 GM模型的核心思想是将观测序列拆分为趋势项和周期项两个部分,并用灰色关联度建立联系。其模型包含以下几个步骤: 1. 累加生成级数:对原始数据进行累加,得到累加生成级数。 2. 确定发展函数:根据生成级数的特点,选择合适的发展函数,常见的有一次、二次、指数型等。 3. 求解模型参数:利用最小二乘等方,求解发展函数的模型参数。 4. 模型检验:通过残差检验等方,验证模型的适用性。 5. 进行预测与分析:根据已有数据和模型参数,进行系统预测与分析。 以下是一个利用MATLAB实现GM模型的示例代码: ```MATLAB % 原始数据 data = [10, 12, 15, 17, 20]; % 累加生成级数 cumulative_data = cumsum(data); % 确定发展函数 x0 = (cumulative_data(1:end-1) + cumulative_data(2:end)) / 2; Y = cumulative_data(2:end); % 求解模型参数 A = [x0', ones(length(x0), 1)]; params = A\Y'; % 模型检验 C = A * params; residuals = Y - C; error = sum(residuals.^2); % 进行预测与分析 predicted_data = [data(1), zeros(1, length(data)-1)]; for i = 2:length(predicted_data) predicted_data(i) = (data(1) - params(2)/params(1)) * exp(-params(1)*(i-1)) + params(2)/params(1); end ``` 通过上述代码,可以实现对GM模型的建立、参数求解、模型检验以及预测与分析等功能。 ### 回答3: GM模型,即灰色模型(Grey Model),是一种用于研究非线性和小样本问题的数学模型。它主要应用于时间序列数据的预测和分析。 GM模型有两种常见的形式:GM(1,1)和GM(2,1)。GM(1,1)模型是最基本的灰色模型,通过累加生成评估建模的微分方程,从而得出数据的演化规律,并通过参数修正建立模型。GM(2,1)模型在GM(1,1)的基础上,再引入二次移动累加平均数,增加了模型精度。 GM模型可以用于时间序列数据的原始值预测、差值预测和累计量预测。其基本思想是通过建立灰色微分方程和灰色累加方程,对样本序列进行分析和处理,从而得到趋势项和周期项,进而对未来的数据进行预测。 以下是GM(1,1)模型的MATLAB代码示例: ```matlab function [GM_Model] = GM11(OriginalData) % OriginalData: 输入的原始序列数据 % GM_Model: 返回的GM(1,1)模型的结果 % 数据预处理,累加求和 n = length(OriginalData); X1 = cumsum(OriginalData); % 创建累加生成序列B B = [-0.5*(OriginalData(1)+OriginalData(2))]; for i = 2:n B = [B, -0.5*(X1(i-1)+X1(i))]; end % 构建数据矩阵X和Y X = X1'; for i = 1:(n-1) X = [X; B(1:n-1)]; end Y = OriginalData'; % 通过最小二乘计算参数a和b a = inv(X*X')*X*Y; b = OriginalData(1) - a*X1(1); % 还原预测结果 PredictedData = zeros(1, n); for i = 1:n PredictedData(i) = (OriginalData(1)-b/a)*exp(-a*(i-1)) - (OriginalData(1)-b/a)*exp(-a*i); end % 计算精度 e = OriginalData - PredictedData; relative_error = mean(abs(e)./OriginalData); % 输出结果 GM_Model.a = a; GM_Model.b = b; GM_Model.PredictedData = PredictedData; GM_Model.RelativeError = relative_error; end ``` 以上代码是一个简单的GM(1,1)模型的实现,其中包含了数据的预处理、建模过程和结果的计算。通过该模型可以得到原始数据的预测结果,并计算预测的相对误差。具体应用时,需要将原始数据输入到函数中进行计算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿白啥也不会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值