自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 模运算、对应定理、积群与商群

即分别对笛卡尔积的各个位置元素做运算(这里都表示为乘法形式),我们称这样所得到的新群。对于5,我们知道由同态结果相等所定义的等价关系定义分割,即。,封闭性、单位元和逆元在这个等式下都是显然的,因此。保证了满射的充要性,接下来我们只要说明在该条件下。由引理1和引理2,我们便实现了目标1、2、3,而。1是显然的,而2,3是在上一个命题中证明的。是我们之前定义的同态,存在一个唯一的同构。是个同构这一点,这是下一个命题的运用。的所有陪集组成一个群,我们称之为商群。表示其陪集所构成的群,同时,定义符号。

2024-01-25 22:45:25 699

原创 代数笔记2:同态、同构、等价关系与陪集

我们知道了左陪集是等价关系,那么就知道它定义出了一个分割,即所有左陪集不交且它们并集为全集。空间的例子,其同态的核即为所用矩阵的零空间,而像则为所定义矩阵的值域。一个等价关系可以确定一个分割,一个分割也可以确定一个等价关系。我们视在分割的同一个子分割的元素等价,显然满足等价关系的公理。,因此该映射可逆,该映射是个双射,可知所有左陪集。有数学分析的知识,不难推出同构的逆仍是同构。,不同的的陪集不可能有相同的元素,因此若。,不难知道,同构是有传递性的:若。,则是它们为同一个元素,这时,

2024-01-22 15:39:30 598

原创 代数笔记1:运算、群与子群

实际上,一般在定义群时总会定义群具有封闭性,但这里并没有定义,这是由于封闭性已在运算中定义。一般而言,在运算中结合律比交换律更普遍(考虑函数复合具有结合律却没有交换律)。上满足结合律的运算(注意运算的封闭性),而单位元和逆元确保了子群。是指一个定义了一个满足以下三个条件的运算的集合。的子群,保证子群的定义,不难得到这样一个结果。在原本运算下封闭,我们将原本的运算规则与群。,虽然上述形式容易被认为是无限群,但事实上。其中,封闭性保证了原本的运算也可以作为。运算具有封闭性,运算是定义在。集合上,以乘法表示群。

2024-01-17 16:54:34 370

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除