代数笔记1:运算、群与子群

运算(composition)的封闭性

运算具有封闭性,运算是定义在 S × S → S S\times S\to S S×SS 的一个映射。
一般而言,在运算中结合律比交换律更普遍(考虑函数复合具有结合律却没有交换律)。

是指一个定义了一个满足以下三个条件的运算的集合 G G G

  1. G G G 上所定义的运算满足结合律。
  2. G G G 中所定义运算中的单位元 e ∈ G e \in G eG
  3. ∀ a ∈ G \forall a \in G aG,有 a − 1 ∈ G a^{-1} \in G a1G

实际上,一般在定义群时总会定义群具有封闭性,但这里并没有定义,这是由于封闭性已在运算中定义。

接下来我们定义子群,对于群 G G G ,若集合 H ∈ G H\in G HG H H H 在原本运算下封闭,我们将原本的运算规则与群 H H H 组成一个群 H H H ,称群 H H H G G G 的子群。
在原本定义在 G G G 上的运算下,若子集 H H H 满足以下几条规则,则其可以与原运算组成 G G G 的子群:

  1. 封闭性: a   ,   b ∈ H ⇒ a b ∈ H a\ ,\ b\in H\Rightarrow ab\in H a , bHabH
  2. 单位元:群 G G G 单位元 e ∈ H e\in H eH
  3. 逆元: ∀ a ∈ H   ,   a − 1 ∈ H \forall a\in H\ ,\ a^{-1}\in H aH , a1H

其中,封闭性保证了原本的运算也可以作为 H H H 上满足结合律的运算(注意运算的封闭性),而单位元和逆元确保了子群 H H H 仍是群。

反群 G o G^o Go 指在群 G G G 集合上,以乘法表示群 G G G 的运算,定义运算 ∗ * 满足 a ∗ b = b a a*b=ba ab=ba 的群。

群的阶:对于一个的群 G G G 而言,我们称其阶 o r d e r G orderG orderG 为其元素的总数。
元素的阶:对于 a ∈ G a\in G aG ,我们称 a a a 的阶 o r d e r ( a ) order(a) order(a) a a a 的张成群 < a > <a> <a> 的阶。
对于元素 a ∈ G a\in G aG ,我们考虑通过它扩张成一个 G G G 的子群,保证子群的定义,不难得到这样一个结果 {   . . .   ,   a − 1   ,   e   ,   a   ,   . . .   } \{\ ...\ ,\ a^{-1}\ ,\ e\ ,\ a\ ,\ ...\ \} { ... , a1 , e , a , ... } ,我们称其为 < a > <a> <a> ,虽然上述形式容易被认为是无限群,但事实上 < a > <a> <a> 可能是有限群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值