代数笔记2:同态、同构、等价关系与陪集

同态(Homomorphisms)

同态是定义在两个群之间,可以交换运算和映射次序的映射。
对于 G G G G ′ G' G 同态 φ \varphi φ ∀ a , b ∈ G \forall a,b\in G a,bG ,以乘法形式表示 G G G G ′ G' G 中的运算,有
φ ( a b ) = φ ( a ) φ ( b ) \varphi(ab) = \varphi(a)\varphi(b) φ(ab)=φ(a)φ(b)
考虑 R n R^n Rn 空间的向量,以加法为运算定义一个群 H H H,那么一个 n × n n\times n n×n 的矩阵便是 H → H H\to H HH 的同态。

对于 φ : G → G ′ \varphi:G\to G' φ:GG,定义
像(image): i m ( φ ) = { ∀ x ∈ G ′   ∣   ∃ a ∈ G ,   φ ( a ) = x   } im(\varphi) = \{ \forall x \in G'\ |\ \exist a\in G,\ \varphi(a)=x\ \} im(φ)={xG  aG, φ(a)=x }
核(kernel): k e r ( φ ) = { ∀ a ∈ G   ∣   φ ( a ) = 1   } ker(\varphi)=\{ \forall a\in G\ |\ \varphi(a) = 1\ \} ker(φ)={aG  φ(a)=1 }
同样考虑上面 R n R^n Rn 空间的例子,其同态的核即为所用矩阵的零空间,而像则为所定义矩阵的值域。

同构(isomorphism)

同构是一个双射的同态。
φ : G → G ′ \varphi:G\to G' φ:GG 是同态,且 k e r   φ = { e } ,   i m   φ = G ′ ker\ \varphi=\{e\},\ im\ \varphi=G' ker φ={e}, im φ=G,则 φ \varphi φ 是同构。
有数学分析的知识,不难推出同构的逆仍是同构。
从数学分析的知识, G G G G ′ G' G 中的元素数量相等是他们之间存在同构的必要条件。

称自身到自身的同构为自同构, g ∈ G ,   g G g − 1 g\in G,\ gGg^{-1} gG, gGg1是一类常见的自同构。

G , G ′ G, G' G,G 之间存在同构,称 G G G 同构于 G ′ G' G,不难知道,同构是有传递性的:若 φ 1 : G 1 → G 2 ,   φ 2 : G 2 → G 3 \varphi_1:G_1\to G_2,\ \varphi_2:G2\to G_3 φ1:G1G2, φ2:G2G3 分别都是同构,则 φ 1 ∘ φ 2 : G 1 → G 3 \varphi_1\circ\varphi_2:G_1\to G_3 φ1φ2:G1G3 显然是 G 1 → G 3 G_1\to G_3 G1G3 的同构,即 G 1 G_1 G1 同构于 G 3 G_3 G3

等价关系和分割(Equivalence Relations and Partitions)

我们这样定义分割 Π \Pi Π ,分割 Π \Pi Π 是将一个集合 S S S 分成若干不交子集的操作。
Π ( S ) = S ‾ \Pi(S)=\overline{S} Π(S)=S
S ‾ \overline{S} S 的元素是 S S S 的不相交的子集,且 ⋃ a ∈ S ‾ a = S \bigcup\limits_{a\in \overline{S}}a=S aSa=S

同时,等价关系是由下列三条公理定义的关系:

  1. 传递性: a ∼ b   ,   b ∼ c ⇒ a ∼ c a\sim b\ ,\ b\sim c\Rightarrow a\sim c ab , bcac
  2. 对称性: a ∼ b ⇒ b ∼ a a\sim b\Rightarrow b\sim a abba
  3. 自反性: a ∼ a a\sim a aa

一个等价关系可以确定一个分割,一个分割也可以确定一个等价关系。
我们视在分割的同一个子分割的元素等价,显然满足等价关系的公理。
同时,定义 π ( a ) = { b ∈ S   ∣   a ∼ b } \pi(a)=\{b\in S\ |\ a\sim b\} π(a)={bS  ab},由自反性,有 a ∈ π ( a ) a\in \pi(a) aπ(a) π ( a ) ≠ ∅ \pi(a)\not ={\empty} π(a)= ∀ s ∈ S   ,   s ∈ π ( s ) \forall s\in S\ ,\ s\in \pi(s) sS , sπ(s) ,同时定义若 π ( a ) = π ( b ) \pi(a)=\pi(b) π(a)=π(b) ,则是它们为同一个元素,这时, π ( S ) = S ‾ \pi(S)=\overline{S} π(S)=S 是显然的。

对于映射 f : S → T f:S\to T f:ST ,我们定义其逆象 f − 1 ( t ) = { s ∈ S   ∣   f ( s ) = t } f^{-1}(t)=\{s\in S\ |\ f(s)=t\} f1(t)={sS  f(s)=t} ,我们也称其逆象为纤维丛。
我们称由同态相等得到的等价关系为全等,即对于同态 φ : G → G ′ \varphi:G\to G' φ:GG ,全等 a ≡ b a\equiv b ab 表示:
a , b ∈ G ,   φ ( a ) = φ ( b ) a,b\in G,\ \varphi(a)=\varphi(b) a,bG, φ(a)=φ(b)
a ≡ b a\equiv b ab ,当且仅当 b ∈ a K   ,   K = k e r φ b\in aK\ ,\ K=ker\varphi baK , K=kerφ
对于 k ∈ K   ,   b = k a k\in K\ ,\ b=ka kK , b=ka 时,上述结论并不显然,但
φ ( b ) = a \varphi(b)=a φ(b)=a
φ ( a − 1 b ) = 1 ⇒ a − 1 b ∈ K \varphi(a^{-1}b)=1\Rightarrow a^{-1}b\in K φ(a1b)=1a1bK
b = a a − 1 b ∈ a K b=aa^{-1}b\in aK b=aa1baK
可得结论。

陪集(coset)

H H H 是群 G G G 的一个子群, a ∈ G a\in G aG ,有
a H = { a h   ∣   h ∈ H } aH=\{ah\ |\ h\in H\} aH={ah  hH}
我们称 a H aH aH 是群 H H H 的左陪集,右陪集同理可定义。

我们现在定义另一种全等关系
a ≡ b : b ∈ a H a\equiv b:b\in aH ab:baH
其是等价关系证明如下:
传递性: b ∈ a H ,   c ∈ b H ,   ∃ h 1 ,   h 2 ∈ H ,   b = a h 1 ,   c = b h 2 ⇒ c = a h 1 h 2 ⇒ c ∈ a H b\in aH,\ c\in bH,\ \exist h_1,\ h_2\in H,\ b=ah_1,\ c=bh_2\Rightarrow c=ah_1h_2\Rightarrow c\in aH baH, cbH, h1, h2H, b=ah1, c=bh2c=ah1h2caH
对称性: b ∈ a H ,   ∃ h ∈ H ,   b = a h ⇒ a = b h − 1 ⇒ a ∈ b H b\in aH,\ \exist h\in H,\ b=ah\Rightarrow a=bh^{-1}\Rightarrow a\in bH baH, hH, b=aha=bh1abH
自反性: 1 ∈ H ,   a = a 1 ⇒ a ∈ a H 1\in H,\ a=a1\Rightarrow a\in aH 1H, a=a1aaH

我们知道了左陪集是等价关系,那么就知道它定义出了一个分割,即所有左陪集不交且它们并集为全集 G G G
接下来,考虑子群 H H H 到它的左陪群 a H aH aH 的映射,这个映射的逆为左乘 a − 1 a^{-1} a1 ,因此该映射可逆,该映射是个双射,可知所有左陪集 a H aH aH H H H 有相同的阶数。
定义指数 [ G : H ] [G:H] [G:H] H H H 所有左陪集的个数,有计数公式:
∣ G ∣ = ∣ H ∣ [ G : H ] |G|=|H|[G:H] G=H[G:H]
对有限群非常有用。

从而有拉格朗日定理:对有限群 G G G 与其子群 H H H ∣ H ∣ |H| H 可分 ∣ G ∣ |G| G

对于一个素数p阶群 G G G ∀ a ∈ G ,   a ≠ 1 ,   < a > = G \forall a\in G,\ a\not=1,\ <a>=G aG, a=1, <a>=G
由于 < a > <a> <a> G G G 的子群,而素数不可分,因此 < a > <a> <a> 阶数总等于p,因此 < a > = G <a>=G <a>=G

接下来,我们考虑同态 φ : G → G ′ \varphi:G\to G' φ:GG 是从有限群到有限群的,有如下命题:

  1. ∣ G ∣ = ∣ k e r φ ∣   ∣ i m φ ∣ |G|=|ker\varphi|\ |im\varphi| G=kerφ imφ
  2. ∣ k e r φ ∣ |ker\varphi| kerφ 可分 ∣ G ∣ |G| G
  3. ∣ i m φ ∣ |im\varphi| imφ 可分 ∣ G ∣ |G| G ∣ G ′ ∣ |G'| G

对于1,令 k e r φ = K ,   ∀ b ∈ i m φ ,   ∃ s ∈ G ,   φ ( s ) = b ,   ∀ x ∈ { φ ( x ) = b } ,   x ∈ b K ker\varphi=K,\ \forall b\in im\varphi,\ \exist s\in G,\ \varphi(s)=b,\ \forall x\in\{\varphi(x)=b\},\ x\in bK kerφ=K, bimφ, sG, φ(s)=b, x{φ(x)=b}, xbK ,由此,我们可以知道左陪集个数等于 ∣ i m φ ∣ |im\varphi| imφ ,再由计数公式可证明该命题。
对于2, k e r φ ker\varphi kerφ G G G 的子群,由拉格朗日定理即得结论。
对于3,1知 ∣ i m φ ∣ |im\varphi| imφ 可分 ∣ G ∣ |G| G ,又有 ∣ i m φ ∣ |im\varphi| imφ G ′ G' G 子群,知 ∣ i m φ ∣ |im\varphi| imφ 可分 ∣ G ′ ∣ |G'| G

显然的,右陪集所形成的分割不一定会与左陪集形成的分割相同,因此下列命题等价并不显然:

  1. H H H 是一个一般子群: ∀ h ∈ H ,   ∀ g ∈ G ,   g h g − 1 ∈ H \forall h\in H,\ \forall g\in G,\ ghg^{-1}\in H hH, gG, ghg1H
  2. ∀ g ∈ G ,   g H g − 1 = H \forall g\in G,\ gHg^{-1}=H gG, gHg1=H
  3. ∀ g ∈ G ,   g H = H g \forall g\in G,\ gH=Hg gG, gH=Hg
  4. H H H G G G 中所有的左陪集同时也是右陪集。

对于 1 → 2 1\to 2 12 ,首先有 g H g − 1 ⊂ H gHg^{-1}\subset H gHg1H ,又有 g − 1 H g ⊂ H g^{-1}Hg\subset H g1HgH ,第二个式子可变为 H ⊂ g H g − 1 H\subset gHg^{-1} HgHg1 ,从而有 H = g H g − 1 H=gHg^{-1} H=gHg1
对于 2 → 3 2\to 3 23 ,有 g H = g − 1 ( g H ) g = H g gH=g^{-1}(gH)g=Hg gH=g1(gH)g=Hg
对于 3 → 4 3\to 4 34 ,这是显然的。
对于 4 → 1 4\to 1 41 ,我们先证明 g H gH gH 等于某个右陪集时,他只可能等于 H g Hg Hg
g ∈ g H ,   g ∈ H g g\in gH,\ g\in Hg ggH, gHg ,由于关于 H H H 的陪集分割 G G G ,不同的的陪集不可能有相同的元素,因此若 g H gH gH 等于某个右陪集, g H = H g gH=Hg gH=Hg
因此 g H g − 1 = H g g − 1 = H gHg^{-1}=Hgg^{-1}=H gHg1=Hgg1=H ∀ h ∈ H ,   g h g − 1 ∈ g H g − 1 = H \forall h\in H,\ ghg^{-1}\in gHg^{-1}=H hH, ghg1gHg1=H ,即证。

最后,我们有如下定理:如果 H H H G G G 唯一一个 r r r 阶子群,那么 H H H 是一般子群。
这是因为 g H g − 1 gHg^{-1} gHg1 也是 r r r 阶子群,有 g H g − 1 = H gHg^{-1}=H gHg1=H

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值