牛客网 DP4.最小花费爬楼梯

本文介绍了如何使用动态规划方法解决阶梯问题的变形,通过逆向思考和成本最小化策略,计算从给定阶梯到达顶点的最少花费路径。关键公式涉及到dp[i]=cost[i]+min(dp[i+1],dp[i+2]),并处理了特殊边界情况。
摘要由CSDN通过智能技术生成

还是阶梯问题的变形。

思路:阶梯问题中,我们知道,需要逆向思考,也就是说从f(n)开始思考,走1个台阶,那么意味着还有f(n-1)中走法,同理走2个台阶,那么意味着还有f(n-2)种解法。在这里我们的f(n)就需要和cost联合在一起了。

其实在原始问题当中我们求的是最多的走法,这里我们求的是最小的花费。是一样的,当我们选择走1阶还是2阶的时候,我们需要知道走1阶的费用用的多还是走2阶费用用的多,但在这之前我们需要在当前的台阶当中支付费用才行。所以就出现了这个式子:dp(i)=cost(i)+min(dp[i+1],dp[i+2])

还需要考虑特殊的情况,那就是:当我们只上1阶时,那之后一种可能,就是支付当前所在阶梯的费用了;当我们在走2阶时,我们需要考虑的问题是,在0阶走2步,还是说在1阶走1步这两种选择,这就取决于在0阶和1阶中的费用问题了。所以那就是min(cost[0],cost[1])。

上代码:

#include <iostream>
#define MAX 100010
using namespace std;
typedef long long LL;
int cost[MAX];
int dp[MAX];
int main() {
    int n;
    cin>>n;
    for(int i=0;i<n;i++)
    cin>>cost[i];
    if(n==1)
    cout<<cost[0]<<endl;
    else if(n==2)
    cout<<min(cost[0],cost[1]);
    else{
        dp[n-1]=cost[n-1];
        dp[n-2]=cost[n-2];
        for(int i=n-3;i>=0;i--){
            dp[i]=cost[i]+min(dp[i+1],dp[i+2]);
        }
        cout<<min(dp[0],dp[1])<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值