还是阶梯问题的变形。
思路:阶梯问题中,我们知道,需要逆向思考,也就是说从f(n)开始思考,走1个台阶,那么意味着还有f(n-1)中走法,同理走2个台阶,那么意味着还有f(n-2)种解法。在这里我们的f(n)就需要和cost联合在一起了。
其实在原始问题当中我们求的是最多的走法,这里我们求的是最小的花费。是一样的,当我们选择走1阶还是2阶的时候,我们需要知道走1阶的费用用的多还是走2阶费用用的多,但在这之前我们需要在当前的台阶当中支付费用才行。所以就出现了这个式子:dp(i)=cost(i)+min(dp[i+1],dp[i+2])
还需要考虑特殊的情况,那就是:当我们只上1阶时,那之后一种可能,就是支付当前所在阶梯的费用了;当我们在走2阶时,我们需要考虑的问题是,在0阶走2步,还是说在1阶走1步这两种选择,这就取决于在0阶和1阶中的费用问题了。所以那就是min(cost[0],cost[1])。
上代码:
#include <iostream>
#define MAX 100010
using namespace std;
typedef long long LL;
int cost[MAX];
int dp[MAX];
int main() {
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>cost[i];
if(n==1)
cout<<cost[0]<<endl;
else if(n==2)
cout<<min(cost[0],cost[1]);
else{
dp[n-1]=cost[n-1];
dp[n-2]=cost[n-2];
for(int i=n-3;i>=0;i--){
dp[i]=cost[i]+min(dp[i+1],dp[i+2]);
}
cout<<min(dp[0],dp[1])<<endl;
}
}