线性DP+摆渡车

线性DP

        具有线性“阶段”划分的动态规划算法称为线性DP。

线性DP无论状态表示是一维还是多维,DP算法在线性DP问题上都体现出了“作用在线性空间上的阶段划分和状态转移” ,DP的阶段沿着各个维度线性增长。从一个或多个“初始状态”开始有方向地向整个状态空间转移、扩展,最后每个状态上都保留了以自身为目标的子问题的最优解。

 


摆渡车

题目描述

有n名同学要乘坐摆渡车从人大附中前往人民大学,第i位同学在第ti分钟去等车。只有一辆摆渡车在工作,但摆渡车容量可以视为无限大。

摆渡车从人大附中出发、 把车上的同学送到人民大学、再回到人大附中(去接其他同学),这样往返一趟总共花费m分钟(同学上下车时间忽略不计)。摆渡车要将所有同学都送到人民大学。

凯凯很好奇,如果他能任意安排摆渡车出发的时间,那么这些同学的等车时间之和最小为多少呢?

注意:摆渡车回到人大附中后可以即刻出发。

输入格式

输入文件名为 bus.in。

第一行包含两个正整数n,m,以一个空格分开,分别代表等车人数和摆渡车往返一趟的时间。

第二行包含n个正整数,相邻两数之间以一个空格分隔,第i个非负整数ti代表第i个同学到达车站的时刻。

输出格式

输出文件名为 bus.out。 

输出一行,一个整数,表示所有同学等车时间之和的最小值(单位:分钟)。

输入输出样例

输入样例1:

5 1 
3 4 4 3 5

输出样例1:

0

输入样例2:

5 5
11 13 1 5 5

输出样例2:

4

说明

【输入输出样例 1 说明】

同学 1 和同学 4 在第 3 分钟开始等车,等待 0 分钟,在第 3 分钟乘坐摆渡车 出发。摆渡车在第 4 分钟回到人大附中。

同学 2 和同学 3 在第 4 分钟开始等车,等待 0 分钟,在第 4 分钟乘坐摆渡车 出发。摆渡车在第 5 分钟回到人大附中。

同学 5 在第 5 分钟开始等车,等待 0 分钟,在第 5 分钟乘坐摆渡车出发。自此 所有同学都被送到人民大学。总等待时间为 0。

【输入输出样例 2 说明】

同学 3 在第 1 分钟开始等车,等待 0 分钟,在第 1 分钟乘坐摆渡车出发。摆渡车在第 6 分钟回到人大附中。

同学 4 和同学 5 在第 5 分钟开始等车,等待 1 分钟,在第 6 分钟乘坐摆渡车出发。摆渡车在第 11 分钟回到人大附中。

同学 1 在第 11 分钟开始等车,等待 2 分钟;同学 2 在第 13 分钟开始等车,等待 0 分钟。他/她们在第 13 分钟乘坐摆渡车出发。自此所有同学都被送到人民大学。 

总等待时间为4。可以证明,没有总等待时间小于 4 的方案。

【数据规模与约定】

对于 10% 的数据,n≤10, m=1, 0≤ti ≤100。

对于 30% 的数据,n≤20, m≤2, 0≤ti ≤100。 

对于 50%的数据,n≤500, m≤100, 0≤ti≤10^4。 

另有 20%的数据,n≤500, m≤10, 0≤ti≤4×10^6。 

对于 100% 的数据,n≤500, m≤100, 0≤ti≤4×10^6。

【耗时限制】2000ms 【内存限制】256MB


上代码吧

#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 505, M = 105, T = 2 * M * N + M, INF = 0x3F3F3F3F;
int n, m, t[N], c[N], d[T], ans = INF;
int wait[T], num[T], sum[T];
int main(){
	scanf("%d%d", &n, &m);
	for(int i=1; i<=n; i++) scanf("%d", &t[i]);
	sort(t + 1, t + 1 + n);
	for(int i=1; i<=n; i++) c[i] = t[i] - t[i-1];
	t[1] = 2 * m, num[t[1]] = 1;
	for (int i=2; i<=n; i++){
		if (c[i] > 2*m ) c[i] = 2*m;
		t[i] = t[i-1] + c[i]; num[t[i]]++;
	}
	for(int i=t[1]; i<t[n]+m; i++) {
		sum[i] = sum[i-1] + num[i];
		wait[i] = wait[i-1] + sum[i-1];
	}
	for(int i=t[1]; i<t[n]+m; i++) {
		d[i] = wait[i];
		for(int j=i-2*m+1; j<=i-m; j++) d[i] = min(d[i], d[j] + wait[i] - wait[j] - sum[j]*(i-j));
	}
	for(int i=t[n]; i<t[n]+m; i++) ans = min(ans, d[i]);
	printf("%d", ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值