数学-快速幂

文章讨论了如何解决计算(m^n)%p时遇到的大数溢出和高时间复杂度问题。通过使用快速幂算法和位操作(按位与和右移),可以显著提高计算效率,避免溢出,将时间复杂度降低到O(logn)。同时还提供了相关的编程练习题以巩固这些概念。
摘要由CSDN通过智能技术生成

从一个简单的问题说起:

给出整数m,n和p,要求计算(m ^ n) % p的结果。

#include <iostream>
using namespace std;

int main() {
    long long m, n, p;
    cin >> m >> n >> p;
    long long ans = 1;
    for (long long i = 0; i < n; i++) {
        ans = ans * m;
    }
    cout << ans << "\n";
    return 0;
}

 这个程序似乎正确了,但是存在严重问题:

<1>.m或n太大,极容易溢出.

<2>.如果n的值太大,时间消耗O(n)代价较大.

首先解决溢出的问题:

显然:

(a * b) % c = ((a  % c)  * (b % c)) % c.

这样,就可以把程序改写为如下形式:

但是,如果n的值太大,时间消耗O(n)代价太大,这个问题如何解决呢? 

#include <iostream>
using namespace std;

int main() {
    long long m, n, p;
    cin >> m >> n >> p;
    long long ans = 1;
    for (long long i = 0; i < n; i++) {
        ans = ((ans % p) * (m % p)) % p;
    }
    cout << ans << "\n";
    return 0;
}

乘方快速幂:

假设要计算 m^10,m^10 = (m^5) ^ 2 = (m * (m ^ 2) ^ 2) ^ 2.

也就是说,要计算m ^ n,有: 

 那么,程序就变成了:

#include <iostream>
using namespace std;

int main() {
    long long m, n, p;
    cin >> m >> n >> p;
    long long ans = 1;
    while (n) {
        if (n % 2 != 0) {
            ans = ((ans % p) * (m % p)) % p;
        }
        n = n / 2;
        m = ((m % p) * (m % p)) % p;
    }
    cout << ans << "\n";
    return 0;
}

但是,对于这个程序,我们仍可以继续对其优化:

首先介绍一下 按位与运算(&) 与 右移运算(>>):

<1>.按位与运算:

对于两个二进制数,它们按位与运算的结果是: 对于每一位,如果两个数的这一位同时为1,那么按位与的结果便是1,否则为0,最后将结果转化为十进制,就是我们想要的答案了。 对于一个整数,如果它是奇数,那么它的二进制表示的最低位为1,否则为0,那么对于奇数而言,其按位与1的结果是1,对于偶数而言,其按位与1的结果是0,由此我们可以通过判断一个整数按位与1的结果来判断其是偶数还是奇数.

<2>.右移运算:

同样是对2进制数进行处理,将所有位置上的数字右移,高位补0:如5:101,右移一位为010,结果是2。则:对于一个整数而言,右移一位,相当于其除以2并向下取整。

我们可以根据这两个运算来初步优化程序:

即将 n % 2 != 0 改为 n & 1 == 1,将 n = n / 2 改为 n = n >> 1.

#include <iostream>
using namespace std;

int main() {
    long long m, n, p;
    cin >> m >> n >> p;
    long long ans = 1;
    while (n) {
        if (n & 1) {
            ans = ((ans % p) * (m % p)) % p;
        }
        n = n >> 1;
        m = ((m % p) * (m % p)) % p;
    }
    cout << ans << "\n";
    return 0;
}

对于m ^ 0,结果为1,1 % 1 == 0,所以,我们应该要防止这种特殊情况,即在进行乘方运算之前,先将ans % p: 

#include <iostream>
using namespace std;

int main() {
    long long m, n, p;
    cin >> m >> n >> p;
    long long ans = 1 % p;
    while (n) {
        if (n & 1) {
            ans = ((ans % p) * (m % p)) % p;
        }
        n = n >> 1;
        m = ((m % p) * (m % p)) % p;
    }
    cout << ans << "\n";
    return 0;
}

因为C++内置的最高整数类型是64位,若运算 (a ^ b) % p中的三个变量a,b,p都在10^18级别,则不存在一个可供强制转化的128位整数类型,我们需要一些特殊的处理办法:

进行乘方运算之前,先让m对p取模一次: 

#include <iostream>
using namespace std;

int main() {
    long long m, n, p;
    cin >> m >> n >> p;
    long long ans = 1 % p;
    m %= p;
    while (n) {
        if (n & 1) {
            ans = ((ans % p) * (m % p)) % p;
        }
        n = n >> 1;
        m = ((m % p) * (m % p)) % p;
    }
    cout << ans << "\n";
    return 0;
}

这样就是最优的形式了。 

下面给出几道相关的练习题: 

Raising Modulo Numbers

我们可以计算每一项a^b的值,然后将其加起来作为结果: 

#include <iostream>
#define i64 long long

i64 qpow(i64 a, i64 b, i64 p) {
    i64 ans = 1 % p;
    a %= p;
    while (b) {
        if (b & 1) {
            ans = ((ans % p) * (a % p)) % p;
        }
        b >>= 1;
        a = ((a % p) * (a % p)) % p;
    }
    return ans;
}

int main() {
    int t; std::cin >> t;
    while (t--) {
        i64 M;
        std::cin >> M;
        i64 H, ans = 0;
        std::cin >> H;
        for (int i = 0; i < H; i++) {
            i64 A, B;
            std::cin >> A >> B;
            ans = ((ans % M) + (qpow(A, B, M) % M)) % M;
        }
        std::cout << ans << "\n";
    }
	return 0;
}

Pseudoprime numbers

题意:

输入p 和 a,如果p不是质数,并且a>1并且(a^p) % p == a % p,那么输出yes,否则输出no

参考代码:

#include <iostream>
using namespace std;

bool isprime(long long n) {
    if (n < 2) {
        return false;
    }
    for (int i = 2; i <= n / i; i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}

long long qpow(long long m, long long n, long long p) {
    long long ans = 1 % p;
    while (n) {
        if (n & 1) {
            ans = ((ans % p) * (m % p)) % p;
        }
        n = n >> 1;
        m = ((m % p) * (m % p)) % p;
    }
    return ans;
}

int main() {
    long long p, a;
    while (cin >> p >> a && p && a) {
        if (isprime(p) == false && qpow(a, p, p) == a % p && a > 1) {
            cout << "yes\n";
        } else {
            cout << "no\n";
        }
    }
    return 0;
}

方阵快速幂: 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值