5
证明:
(1)充分性
因为 ϕ 是一种群同态,
Ɐ
g
1
,
g
2
∈
G
Ɐg1, g2 ∈ G
Ɐg1,g2∈G,有
ϕ
(
g
1
∗
g
2
)
=
ϕ
(
g
1
)
∗
ϕ
(
g
2
)
ϕ(g1 * g2)=ϕ(g1) * ϕ(g2)
ϕ(g1∗g2)=ϕ(g1)∗ϕ(g2)
ϕ
(
g
1
)
∗
ϕ
(
g
2
)
=
g
1
2
∗
g
2
2
ϕ(g1) * ϕ(g2) = g1^2 * g2^2
ϕ(g1)∗ϕ(g2)=g12∗g22
ϕ
(
g
1
∗
g
2
)
=
(
g
1
∗
g
2
)
2
=
g
1
∗
g
2
∗
g
1
∗
g
2
ϕ(g1*g2)=(g1*g2)^2=g1*g2*g1*g2
ϕ(g1∗g2)=(g1∗g2)2=g1∗g2∗g1∗g2
故
g
1
2
∗
g
2
2
=
g
1
∗
g
2
∗
g
1
∗
g
2
g1^2 * g2^2=g1*g2*g1*g2
g12∗g22=g1∗g2∗g1∗g2
即
g
1
∗
g
2
=
g
2
∗
g
1
g1*g2=g2*g1
g1∗g2=g2∗g1
所以G为阿贝尔群。
(2)必要性
因为 G为阿贝尔群,
Ɐ
g
1
,
g
2
∈
G
Ɐg1, g2 ∈ G
Ɐg1,g2∈G,有
g
1
∗
g
2
=
g
2
∗
g
1
g1*g2=g2*g1
g1∗g2=g2∗g1
两边同乘
g
1
∗
g
2
g1*g2
g1∗g2,得:
g
1
∗
g
2
∗
g
1
∗
g
2
=
g
2
∗
g
1
∗
g
1
∗
g
2
g1*g2*g1*g2=g2*g1*g1*g2
g1∗g2∗g1∗g2=g2∗g1∗g1∗g2
结合律得
(
g
1
∗
g
2
)
2
=
g
2
∗
g
1
2
∗
g
2
(g1*g2)^2=g2*g1^2*g2
(g1∗g2)2=g2∗g12∗g2
交换律、结合律得$
(
g
1
∗
g
2
)
2
=
g
1
2
∗
g
2
2
(g1*g2)^2=g1^2*g2^2
(g1∗g2)2=g12∗g22
即
ϕ
(
g
1
∗
g
2
)
=
ϕ
(
g
1
)
∗
ϕ
(
g
2
)
ϕ(g1 * g2)=ϕ(g1) * ϕ(g2)
ϕ(g1∗g2)=ϕ(g1)∗ϕ(g2)
所以为群同态。
综上,得证。
6
证明:
设e是G的生成元
(1)因为G是循环群,所以有
g
=
e
n
g = e^n
g=en
Ɐ
ϕ
(
g
)
∈
ϕ
(
G
)
Ɐϕ(g)∈ϕ(G)
Ɐϕ(g)∈ϕ(G),
ϕ
(
g
)
=
ϕ
(
e
n
)
=
ϕ
(
e
)
∗
ϕ
(
e
)
∗
…
…
∗
ϕ
(
e
)
=
ϕ
(
e
)
n
ϕ(g)=ϕ(e^n)=ϕ(e)*ϕ(e)*……*ϕ(e)=ϕ(e)^n
ϕ(g)=ϕ(en)=ϕ(e)∗ϕ(e)∗……∗ϕ(e)=ϕ(e)n
故ϕ(G)为循环群
(2)因为G是交换群,所以
Ɐ
g
1
,
g
2
∈
G
Ɐg1,g2∈G
Ɐg1,g2∈G,
g
1
∗
g
2
=
g
2
∗
g
1
g1*g2=g2*g1
g1∗g2=g2∗g1
ϕ
(
g
1
)
∗
ϕ
(
g
2
)
=
ϕ
(
g
1
∗
g
2
)
=
ϕ
(
g
2
∗
g
1
)
=
ϕ
(
g
2
)
∗
ϕ
(
g
1
)
ϕ(g1)*ϕ(g2)=ϕ(g1*g2)=ϕ(g2*g1)=ϕ(g2)*ϕ(g1)
ϕ(g1)∗ϕ(g2)=ϕ(g1∗g2)=ϕ(g2∗g1)=ϕ(g2)∗ϕ(g1)
故ϕ(G)为交换群
7
因为H 是 G 上指标为 2 的子群,对于
Ɐ
g
∈
G
Ɐg \in G
Ɐg∈G,
g
2
∈
H
g^2 \in H
g2∈H。Ɐ
g
∈
G
g \in G
g∈G 和
h
∈
H
h \in H
h∈H,即证
g
h
g
−
1
∈
H
ghg^{-1} \in H
ghg−1∈H。
g
h
g
−
1
ghg^{-1}
ghg−1 =
(
g
h
)
g
−
1
(gh)g^{-1}
(gh)g−1:
(1)如果
g
∈
H
g \in H
g∈H,则
g
h
g
−
1
=
h
(
g
g
−
1
)
=
h
∈
H
ghg^{-1} = h(gg^{-1}) = h \in H
ghg−1=h(gg−1)=h∈H,因为
H
H
H 是一个群。
(2)如果
g
∉
H
g \notin H
g∈/H,则
g
2
∈
H
g^2 \in H
g2∈H。令
h
’
=
g
2
h’=g^2
h’=g2,其中
h
’
∈
H
h’ \in H
h’∈H。
则
g
h
g
−
1
=
(
g
h
)
(
g
−
1
)
=
(
g
h
)
(
g
−
1
)
(
g
2
)
(
g
−
1
)
=
(
g
h
)
(
g
−
1
)
(
h
’
)
(
g
−
1
)
∈
H
ghg^{-1} = (gh)(g^{-1}) = (gh)(g^{-1})(g^2)(g^{-1}) = (gh)(g^{-1})(h’)(g^{-1})\in H
ghg−1=(gh)(g−1)=(gh)(g−1)(g2)(g−1)=(gh)(g−1)(h’)(g−1)∈H
综上所述,Ɐ g ∈ G g \in G g∈G 和 h ∈ H h \in H h∈H,都有 g h g − 1 ∈ H ghg^{-1} \in H ghg−1∈H。因此, H H H 是 G G G 的正规子群。
8
要证明商群
G
/
H
G/H
G/H 是阿贝尔群,即证 Ɐ
a
H
,
b
H
∈
G
/
H
aH, bH \in G/H
aH,bH∈G/H,有
(
a
H
)
(
b
H
)
=
(
b
H
)
(
a
H
)
(aH)(bH) = (bH)(aH)
(aH)(bH)=(bH)(aH)。
(
a
H
)
(
b
H
)
=
(
a
h
)
(
b
h
’
)
(aH)(bH) = (ah)(bh’)
(aH)(bH)=(ah)(bh’),其中
h
,
h
’
∈
H
h, h’ \in H
h,h’∈H
由于
G
G
G 是阿贝尔群,所以
(
a
h
)
(
b
h
’
)
=
(
b
h
’
)
(
a
h
)
(ah)(bh’) = (bh’)(ah)
(ah)(bh’)=(bh’)(ah) ,其中
h
,
h
’
∈
H
h, h’ \in H
h,h’∈H 成立。
因此
(
a
H
)
(
b
H
)
=
(
b
H
)
(
a
H
)
(aH)(bH) = (bH)(aH)
(aH)(bH)=(bH)(aH),即商群
G
/
H
G/H
G/H 的乘法运算满足交换律。
综上所述,如果群
G
G
G 是阿贝尔群,则商群
G
/
H
G/H
G/H 也是阿贝尔群。
9
因为 G G G 是循环群,存在生成元 x ∈ G x \in G x∈G,使得对于任意的 g ∈ G g \in G g∈G,存在一个整数 n n n,使得 x n = g x^n = g xn=g。
现在考虑元素 x H ∈ G / H xH \in G/H xH∈G/H,我们可以写成 x H = { x h : h ∈ H } xH = \{xh : h \in H\} xH={xh:h∈H}。
对于Ɐ
g
H
∈
G
/
H
gH \in G/H
gH∈G/H,取
n
n
n 使得
x
n
=
g
x^n = g
xn=g,即
x
n
=
g
h
′
x^n = gh'
xn=gh′,其中
h
′
∈
H
h' \in H
h′∈H。
所以
(
x
H
)
n
=
(
x
n
)
H
=
(
g
h
′
)
H
=
g
H
(xH)^n = (x^n)H = (gh')H = gH
(xH)n=(xn)H=(gh′)H=gH。
这说明元素
x
H
xH
xH 是商群
G
/
H
G/H
G/H 的一个生成元,即商群
G
/
H
G/H
G/H 是循环群。