第五次作业

文章目录

5

证明:
(1)充分性
因为 ϕ 是一种群同态, Ɐ g 1 , g 2 ∈ G Ɐg1, g2 ∈ G g1,g2G,有 ϕ ( g 1 ∗ g 2 ) = ϕ ( g 1 ) ∗ ϕ ( g 2 ) ϕ(g1 * g2)=ϕ(g1) * ϕ(g2) ϕ(g1g2)=ϕ(g1)ϕ(g2)
ϕ ( g 1 ) ∗ ϕ ( g 2 ) = g 1 2 ∗ g 2 2 ϕ(g1) * ϕ(g2) = g1^2 * g2^2 ϕ(g1)ϕ(g2)=g12g22
ϕ ( g 1 ∗ g 2 ) = ( g 1 ∗ g 2 ) 2 = g 1 ∗ g 2 ∗ g 1 ∗ g 2 ϕ(g1*g2)=(g1*g2)^2=g1*g2*g1*g2 ϕ(g1g2)=(g1g2)2=g1g2g1g2
g 1 2 ∗ g 2 2 = g 1 ∗ g 2 ∗ g 1 ∗ g 2 g1^2 * g2^2=g1*g2*g1*g2 g12g22=g1g2g1g2
g 1 ∗ g 2 = g 2 ∗ g 1 g1*g2=g2*g1 g1g2=g2g1
所以G为阿贝尔群。
(2)必要性
因为 G为阿贝尔群, Ɐ g 1 , g 2 ∈ G Ɐg1, g2 ∈ G g1,g2G,有 g 1 ∗ g 2 = g 2 ∗ g 1 g1*g2=g2*g1 g1g2=g2g1
两边同乘 g 1 ∗ g 2 g1*g2 g1g2,得:
g 1 ∗ g 2 ∗ g 1 ∗ g 2 = g 2 ∗ g 1 ∗ g 1 ∗ g 2 g1*g2*g1*g2=g2*g1*g1*g2 g1g2g1g2=g2g1g1g2
结合律得 ( g 1 ∗ g 2 ) 2 = g 2 ∗ g 1 2 ∗ g 2 (g1*g2)^2=g2*g1^2*g2 (g1g2)2=g2g12g2
交换律、结合律得$ ( g 1 ∗ g 2 ) 2 = g 1 2 ∗ g 2 2 (g1*g2)^2=g1^2*g2^2 (g1g2)2=g12g22
ϕ ( g 1 ∗ g 2 ) = ϕ ( g 1 ) ∗ ϕ ( g 2 ) ϕ(g1 * g2)=ϕ(g1) * ϕ(g2) ϕ(g1g2)=ϕ(g1)ϕ(g2)
所以为群同态。

综上,得证。

6

证明:
设e是G的生成元
(1)因为G是循环群,所以有 g = e n g = e^n g=en
Ɐ ϕ ( g ) ∈ ϕ ( G ) Ɐϕ(g)∈ϕ(G) ϕ(g)ϕ(G) ϕ ( g ) = ϕ ( e n ) = ϕ ( e ) ∗ ϕ ( e ) ∗ … … ∗ ϕ ( e ) = ϕ ( e ) n ϕ(g)=ϕ(e^n)=ϕ(e)*ϕ(e)*……*ϕ(e)=ϕ(e)^n ϕ(g)=ϕ(en)=ϕ(e)ϕ(e)……ϕ(e)=ϕ(e)n
故ϕ(G)为循环群
(2)因为G是交换群,所以 Ɐ g 1 , g 2 ∈ G Ɐg1,g2∈G g1,g2G g 1 ∗ g 2 = g 2 ∗ g 1 g1*g2=g2*g1 g1g2=g2g1
ϕ ( g 1 ) ∗ ϕ ( g 2 ) = ϕ ( g 1 ∗ g 2 ) = ϕ ( g 2 ∗ g 1 ) = ϕ ( g 2 ) ∗ ϕ ( g 1 ) ϕ(g1)*ϕ(g2)=ϕ(g1*g2)=ϕ(g2*g1)=ϕ(g2)*ϕ(g1) ϕ(g1)ϕ(g2)=ϕ(g1g2)=ϕ(g2g1)=ϕ(g2)ϕ(g1)
故ϕ(G)为交换群

7

因为H 是 G 上指标为 2 的子群,对于 Ɐ g ∈ G Ɐg \in G gG g 2 ∈ H g^2 \in H g2H。Ɐ g ∈ G g \in G gG h ∈ H h \in H hH,即证 g h g − 1 ∈ H ghg^{-1} \in H ghg1H
g h g − 1 ghg^{-1} ghg1 = ( g h ) g − 1 (gh)g^{-1} (gh)g1:
(1)如果 g ∈ H g \in H gH,则 g h g − 1 = h ( g g − 1 ) = h ∈ H ghg^{-1} = h(gg^{-1}) = h \in H ghg1=h(gg1)=hH,因为 H H H 是一个群。
(2)如果 g ∉ H g \notin H g/H,则 g 2 ∈ H g^2 \in H g2H。令 h ’ = g 2 h’=g^2 h=g2,其中 h ’ ∈ H h’ \in H hH
g h g − 1 = ( g h ) ( g − 1 ) = ( g h ) ( g − 1 ) ( g 2 ) ( g − 1 ) = ( g h ) ( g − 1 ) ( h ’ ) ( g − 1 ) ∈ H ghg^{-1} = (gh)(g^{-1}) = (gh)(g^{-1})(g^2)(g^{-1}) = (gh)(g^{-1})(h’)(g^{-1})\in H ghg1=(gh)(g1)=(gh)(g1)(g2)(g1)=(gh)(g1)(h)(g1)H

综上所述,Ɐ g ∈ G g \in G gG h ∈ H h \in H hH,都有 g h g − 1 ∈ H ghg^{-1} \in H ghg1H。因此, H H H G G G 的正规子群。

8

要证明商群 G / H G/H G/H 是阿贝尔群,即证 Ɐ a H , b H ∈ G / H aH, bH \in G/H aH,bHG/H,有 ( a H ) ( b H ) = ( b H ) ( a H ) (aH)(bH) = (bH)(aH) (aH)(bH)=(bH)(aH)
( a H ) ( b H ) = ( a h ) ( b h ’ ) (aH)(bH) = (ah)(bh’) (aH)(bH)=(ah)(bh),其中 h , h ’ ∈ H h, h’ \in H h,hH
由于 G G G 是阿贝尔群,所以 ( a h ) ( b h ’ ) = ( b h ’ ) ( a h ) (ah)(bh’) = (bh’)(ah) (ah)(bh)=(bh)(ah) ,其中 h , h ’ ∈ H h, h’ \in H h,hH 成立。
因此 ( a H ) ( b H ) = ( b H ) ( a H ) (aH)(bH) = (bH)(aH) (aH)(bH)=(bH)(aH),即商群 G / H G/H G/H 的乘法运算满足交换律。
综上所述,如果群 G G G 是阿贝尔群,则商群 G / H G/H G/H 也是阿贝尔群。

9

因为 G G G 是循环群,存在生成元 x ∈ G x \in G xG,使得对于任意的 g ∈ G g \in G gG,存在一个整数 n n n,使得 x n = g x^n = g xn=g

现在考虑元素 x H ∈ G / H xH \in G/H xHG/H,我们可以写成 x H = { x h : h ∈ H } xH = \{xh : h \in H\} xH={xh:hH}

对于Ɐ g H ∈ G / H gH \in G/H gHG/H,取 n n n 使得 x n = g x^n = g xn=g,即 x n = g h ′ x^n = gh' xn=gh,其中 h ′ ∈ H h' \in H hH
所以 ( x H ) n = ( x n ) H = ( g h ′ ) H = g H (xH)^n = (x^n)H = (gh')H = gH (xH)n=(xn)H=(gh)H=gH
这说明元素 x H xH xH 是商群 G / H G/H G/H 的一个生成元,即商群 G / H G/H G/H 是循环群。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值