第4题
(1)
若
a
为
p
的
Q
R
,
则
a
≡
b
≡
x
2
(
m
o
d
p
)
,
即
(
a
/
p
)
=
(
b
/
p
)
=
1
若a为p的QR,则a≡b≡x^2\pmod{p},即(a/p)=(b/p)=1
若a为p的QR,则a≡b≡x2(modp),即(a/p)=(b/p)=1
若
a
为
p
的
N
Q
R
,
则
b
也为
p
的
N
Q
R
,
即
(
a
/
p
)
=
(
b
/
p
)
=
−
1
若a为p的NQR,则b也为p的NQR,即(a/p)=(b/p)=-1
若a为p的NQR,则b也为p的NQR,即(a/p)=(b/p)=−1
(2)
分两种情况
1) a ≡ 0 ( m o d p ) a \equiv 0 \pmod{p} a≡0(modp)或 b ≡ 0 ( m o d p ) b \equiv 0 \pmod{p} b≡0(modp)。
如果
a
≡
0
(
m
o
d
p
)
a \equiv 0 \pmod{p}
a≡0(modp),那么
(
a
/
p
)
=
0
(a/p) = 0
(a/p)=0,而
(
a
b
/
p
)
=
0
(ab/p) = 0
(ab/p)=0,所以
(
a
/
p
)
(
b
/
p
)
=
0
=
(
a
b
/
p
)
(a/p)(b/p) = 0 = (ab/p)
(a/p)(b/p)=0=(ab/p)。
b
≡
0
(
m
o
d
p
)
b \equiv 0 \pmod{p}
b≡0(modp)同理。
2) a a a和 b ( m o d p ) b\pmod{p} b(modp)都不等于0。
如果 a a a和 b b b都不等于0,所以 ( a / p ) ( b / p ) = − 1 (a/p)(b/p) = -1 (a/p)(b/p)=−1或 1 1 1,而 ( a b / p ) = − 1 (ab/p) = -1 (ab/p)=−1或 1 1 1。根据模 p p p勒让德符号的性质, ( a b / p ) = ( a / p ) ( b / p ) (ab/p) = (a/p)(b/p) (ab/p)=(a/p)(b/p)。
所以 ( a / p ) ( b / p ) = ( a b / p ) (a/p)(b/p) = (ab/p) (a/p)(b/p)=(ab/p)。
(3)
由2),令 a = b a=b a=b,则 ( a 2 / p ) = ( a / p ) ( a / p ) = 1 2 或 ( − 1 ) 2 = 1 (a^2/p)=(a/p)(a/p)=1^2或(-1)^2=1 (a2/p)=(a/p)(a/p)=12或(−1)2=1,
第5题
(1)
如果
p
≡
1
(
m
o
d
4
)
p \equiv 1 \pmod{4}
p≡1(mod4),则存在整数
k
k
k使得
p
=
4
k
+
1
p = 4k + 1
p=4k+1。
(
−
1
/
p
)
=
(
−
1
)
(
p
−
1
)
/
2
=
(
−
1
)
2
k
=
1
(-1/p)=(-1)^{(p-1)/2}=(-1)^{2k}=1
(−1/p)=(−1)(p−1)/2=(−1)2k=1
(2)
如果
p
≡
−
1
(
m
o
d
4
)
p \equiv -1 \pmod{4}
p≡−1(mod4),那么存在整数
k
k
k使得
p
=
4
k
−
1
p = 4k - 1
p=4k−1。
(
−
1
/
p
)
=
(
−
1
)
(
p
−
1
)
/
2
=
(
−
1
)
2
k
−
1
=
−
1
(-1/p)=(-1)^{(p-1)/2}=(-1)^{2k-1}=-1
(−1/p)=(−1)(p−1)/2=(−1)2k−1=−1
第6题
假设 g g g 是 Z p ∗ Z^*_p Zp∗ 的一个生成元。则 g p − 1 = 1 ( m o d p ) g^{p-1}=1\pmod{p} gp−1=1(modp),故 g ( p − 1 ) / 2 = 1 g^{(p-1)/2}=1 g(p−1)/2=1或 − 1 -1 −1。如果 ( − 1 / p ) = 1 (-1/p)=1 (−1/p)=1,则存在 k k k使 g k = − 1 g^k=-1 gk=−1,又因为g是生成元,所以不存在,故 g ( p − 1 ) / 2 = 1 g^{(p-1)/2}=1 g(p−1)/2=1,所以 Z p ∗ Z^*_p Zp∗的所有生成元都是模 p p p的二次非剩余。