第七次作业

第4题

(1)

若 a 为 p 的 Q R , 则 a ≡ b ≡ x 2 ( m o d p ) , 即 ( a / p ) = ( b / p ) = 1 若a为p的QR,则a≡b≡x^2\pmod{p},即(a/p)=(b/p)=1 apQR,abx2(modp),(a/p)=(b/p)=1
若 a 为 p 的 N Q R , 则 b 也为 p 的 N Q R , 即 ( a / p ) = ( b / p ) = − 1 若a为p的NQR,则b也为p的NQR,即(a/p)=(b/p)=-1 apNQR,b也为pNQR,(a/p)=(b/p)=1

(2)

分两种情况

1) a ≡ 0 ( m o d p ) a \equiv 0 \pmod{p} a0(modp) b ≡ 0 ( m o d p ) b \equiv 0 \pmod{p} b0(modp)

如果 a ≡ 0 ( m o d p ) a \equiv 0 \pmod{p} a0(modp),那么 ( a / p ) = 0 (a/p) = 0 (a/p)=0,而 ( a b / p ) = 0 (ab/p) = 0 (ab/p)=0,所以 ( a / p ) ( b / p ) = 0 = ( a b / p ) (a/p)(b/p) = 0 = (ab/p) (a/p)(b/p)=0=(ab/p)
b ≡ 0 ( m o d p ) b \equiv 0 \pmod{p} b0(modp)同理。

2) a a a b ( m o d p ) b\pmod{p} b(modp)都不等于0。

如果 a a a b b b都不等于0,所以 ( a / p ) ( b / p ) = − 1 (a/p)(b/p) = -1 (a/p)(b/p)=1 1 1 1,而 ( a b / p ) = − 1 (ab/p) = -1 (ab/p)=1 1 1 1。根据模 p p p勒让德符号的性质, ( a b / p ) = ( a / p ) ( b / p ) (ab/p) = (a/p)(b/p) (ab/p)=(a/p)(b/p)

所以 ( a / p ) ( b / p ) = ( a b / p ) (a/p)(b/p) = (ab/p) (a/p)(b/p)=(ab/p)

(3)

由2),令 a = b a=b a=b,则 ( a 2 / p ) = ( a / p ) ( a / p ) = 1 2 或 ( − 1 ) 2 = 1 (a^2/p)=(a/p)(a/p)=1^2或(-1)^2=1 (a2/p)=(a/p)(a/p)=12(1)2=1,

第5题

(1)

如果 p ≡ 1 ( m o d 4 ) p \equiv 1 \pmod{4} p1(mod4),则存在整数 k k k使得 p = 4 k + 1 p = 4k + 1 p=4k+1
( − 1 / p ) = ( − 1 ) ( p − 1 ) / 2 = ( − 1 ) 2 k = 1 (-1/p)=(-1)^{(p-1)/2}=(-1)^{2k}=1 (1/p)=(1)(p1)/2=(1)2k=1

(2)

如果 p ≡ − 1 ( m o d 4 ) p \equiv -1 \pmod{4} p1(mod4),那么存在整数 k k k使得 p = 4 k − 1 p = 4k - 1 p=4k1
( − 1 / p ) = ( − 1 ) ( p − 1 ) / 2 = ( − 1 ) 2 k − 1 = − 1 (-1/p)=(-1)^{(p-1)/2}=(-1)^{2k-1}=-1 (1/p)=(1)(p1)/2=(1)2k1=1

第6题

假设 g g g Z p ∗ Z^*_p Zp 的一个生成元。则 g p − 1 = 1 ( m o d p ) g^{p-1}=1\pmod{p} gp1=1(modp),故 g ( p − 1 ) / 2 = 1 g^{(p-1)/2}=1 g(p1)/2=1 − 1 -1 1。如果 ( − 1 / p ) = 1 (-1/p)=1 (1/p)=1,则存在 k k k使 g k = − 1 g^k=-1 gk=1,又因为g是生成元,所以不存在,故 g ( p − 1 ) / 2 = 1 g^{(p-1)/2}=1 g(p1)/2=1,所以 Z p ∗ Z^*_p Zp的所有生成元都是模 p p p的二次非剩余。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值