题目
DL公司2019年12月10日欲购置一批电脑,销售方提出三种付款方案,具体如下:
方案1:2019年12月10日付款10万元,从2021年开始,每年12月10日付款28万元,连续支付5次;
方案2:2019年12月10日付款5万元,从2020年开始,每年12月10日付款25万元,连续支付6次;
方案3:2019年12月10日付款10万元,从2020年开始,6月10日和12月10日付款15万元,连续支付8次;
假设计算时间价值的年利率为10%,应该选择哪个方案?
要决定选择哪个付款方案,首先需要将所有付款方案的现金流折算成同一时间点的现值(即将未来的支付金额转换为2019年12月10日的现值)。然后比较这些现值,选择现值最小的方案。
计算步骤
-
计算现值公式:
现值计算公式是:
其中,C 是每期付款金额,r 是年利率(10%),n 是支付期数(以年为单位)。 -
现金流的现值计算: 我们会根据不同的支付安排计算每个支付方案的现值。
方案1
-
2019年12月10日支付10万元,立即付款,无需折现。
-
从2021年开始,每年12月10日支付28万元,持续5年。
现值计算:
-
第1次付款:2019年12月10日支付10万元,无需折现,现值为10万元。
-
第2次付款:2021年12月10日支付28万元,折现2年:
-
第3次付款:2022年12月10日支付28万元,折现3年:
-
第4次付款:2023年12月10日支付28万元,折现4年:
-
第5次付款:2024年12月10日支付28万元,折现5年:
方案2
-
2019年12月10日支付5万元,立即付款,无需折现。
-
从2020年开始,每年12月10日支付25万元,持续6年。
现值计算:
-
第1次付款:2019年12月10日支付5万元,无需折现,现值为5万元。
-
第2次付款:2020年12月10日支付25万元,折现1年:
-
第3次付款:2021年12月10日支付25万元,折现2年:
-
第4次付款:2022年12月10日支付25万元,折现3年:
-
第5次付款:2023年12月10日支付25万元,折现4年:
-
第6次付款:2024年12月10日支付25万元,折现5年:
方案3
-
2019年12月10日支付10万元,立即付款,无需折现。
-
从2020年开始,每年6月10日和12月10日支付15万元,持续8次。
现值计算:
-
第1次付款:2019年12月10日支付10万元,无需折现,现值为10万元。
-
第2次付款:2020年6月10日支付15万元,折现0.5年(6个月):
-
第3次付款:2020年12月10日支付15万元,折现1年:
-
第4次付款:2021年6月10日支付15万元,折现1.5年:
-
第5次付款:2021年12月10日支付15万元,折现2年:
-
第6次付款:2022年6月10日支付15万元,折现2.5年:
-
第7次付款:2022年12月10日支付15万元,折现3年:
-
第8次付款:2023年6月10日支付15万元,折现3.5年:
总现值计算
我们将所有付款的现值相加,以得出每个方案的总现值。接下来,我将进行计算。
# 利率和现金流参数
r = 0.1
# 方案1的现值计算
PV1 = 10 # 2019年12月10日支付10万元,现值为10万元
PV1 += 28 / (1 + r)**2 # 第2次付款,折现2年
PV1 += 28 / (1 + r)**3 # 第3次付款,折现3年
PV1 += 28 / (1 + r)**4 # 第4次付款,折现4年
PV1 += 28 / (1 + r)**5 # 第5次付款,折现5年
# 方案2的现值计算
PV2 = 5 # 2019年12月10日支付5万元,现值为5万元
PV2 += 25 / (1 + r)**1 # 第2次付款,折现1年
PV2 += 25 / (1 + r)**2 # 第3次付款,折现2年
PV2 += 25 / (1 + r)**3 # 第4次付款,折现3年
PV2 += 25 / (1 + r)**4 # 第5次付款,折现4年
PV2 += 25 / (1 + r)**5 # 第6次付款,折现5年
# 方案3的现值计算
PV3 = 10 # 2019年12月10日支付10万元,现值为10万元
PV3 += 15 / (1 + r)**0.5 # 第2次付款,折现0.5年
PV3 += 15 / (1 + r)**1 # 第3次付款,折现1年
PV3 += 15 / (1 + r)**1.5 # 第4次付款,折现1.5年
PV3 += 15 / (1 + r)**2 # 第5次付款,折现2年
PV3 += 15 / (1 + r)**2.5 # 第6次付款,折现2.5年
PV3 += 15 / (1 + r)**3 # 第7次付款,折现3年
PV3 += 15 / (1 + r)**3.5 # 第8次付款,折现3.5年
# 返回每个方案的现值
PV1, PV2, PV3
根据计算结果,各个方案的现值如下:
-
方案1的现值:90.69万元
-
方案2的现值:99.77万元
-
方案3的现值:97.17万元
因此,选择方案1是最优的,因为它的现值最小。