【财务管理学】第二章 计算题

题目

DL公司2019年12月10日欲购置一批电脑,销售方提出三种付款方案,具体如下:

方案1:2019年12月10日付款10万元,从2021年开始,每年12月10日付款28万元,连续支付5次;

方案2:2019年12月10日付款5万元,从2020年开始,每年12月10日付款25万元,连续支付6次;

方案3:2019年12月10日付款10万元,从2020年开始,6月10日和12月10日付款15万元,连续支付8次;

假设计算时间价值的年利率为10%,应该选择哪个方案?

要决定选择哪个付款方案,首先需要将所有付款方案的现金流折算成同一时间点的现值(即将未来的支付金额转换为2019年12月10日的现值)。然后比较这些现值,选择现值最小的方案。

计算步骤

  1. 计算现值公式:
    现值计算公式是:PV=\frac{C}{(1+r)^{n}}
    其中,C 是每期付款金额,r 是年利率(10%),n 是支付期数(以年为单位)。

  2. 现金流的现值计算: 我们会根据不同的支付安排计算每个支付方案的现值。

方案1

  • 2019年12月10日支付10万元,立即付款,无需折现。

  • 从2021年开始,每年12月10日支付28万元,持续5年

现值计算:

  • 第1次付款:2019年12月10日支付10万元,无需折现,现值为10万元。

  • 第2次付款:2021年12月10日支付28万元,折现2年: PV_{2}=\frac{28}{(1+0.1)^{2}}

  • 第3次付款:2022年12月10日支付28万元,折现3年: PV_{3}=\frac{28}{(1+0.1)^{3}}

  • 第4次付款:2023年12月10日支付28万元,折现4年:PV_{4}=\frac{28}{(1+0.1)^{4}}

  • 第5次付款:2024年12月10日支付28万元,折现5年: PV_{5}=\frac{28}{(1+0.1)^{5}}

方案2

  • 2019年12月10日支付5万元,立即付款,无需折现。

  • 从2020年开始,每年12月10日支付25万元,持续6年

现值计算:

  • 第1次付款:2019年12月10日支付5万元,无需折现,现值为5万元。

  • 第2次付款:2020年12月10日支付25万元,折现1年: PV_{2}=\frac{25}{(1+0.1)^{1}}

  • 第3次付款:2021年12月10日支付25万元,折现2年: PV_{3}=\frac{25}{(1+0.1)^{2}}

  • 第4次付款:2022年12月10日支付25万元,折现3年: PV_{4}=\frac{25}{(1+0.1)^{3}}

  • 第5次付款:2023年12月10日支付25万元,折现4年: PV_{5}=\frac{25}{(1+0.1)^{4}}

  • 第6次付款:2024年12月10日支付25万元,折现5年: PV_{6}=\frac{25}{(1+0.1)^{5}}

方案3

  • 2019年12月10日支付10万元,立即付款,无需折现。

  • 从2020年开始,每年6月10日和12月10日支付15万元,持续8次

现值计算:

  • 第1次付款:2019年12月10日支付10万元,无需折现,现值为10万元。

  • 第2次付款:2020年6月10日支付15万元,折现0.5年(6个月): PV_{2}=\frac{15}{(1+0.1)^{0.5}}

  • 第3次付款:2020年12月10日支付15万元,折现1年: PV_{3}=\frac{15}{(1+0.1)^{1}}

  • 第4次付款:2021年6月10日支付15万元,折现1.5年: PV_{4}=\frac{15}{(1+0.1)^{1.5}}

  • 第5次付款:2021年12月10日支付15万元,折现2年: PV_{5}=\frac{15}{(1+0.1)^{2}}

  • 第6次付款:2022年6月10日支付15万元,折现2.5年: PV_{6}=\frac{15}{(1+0.1)^{2.5}}

  • 第7次付款:2022年12月10日支付15万元,折现3年: PV_{7}=\frac{15}{(1+0.1)^{3}}

  • 第8次付款:2023年6月10日支付15万元,折现3.5年: PV_{8}=\frac{15}{(1+0.1)^{3.5}}

总现值计算

我们将所有付款的现值相加,以得出每个方案的总现值。接下来,我将进行计算。

# 利率和现金流参数
r = 0.1

# 方案1的现值计算
PV1 = 10  # 2019年12月10日支付10万元,现值为10万元
PV1 += 28 / (1 + r)**2  # 第2次付款,折现2年
PV1 += 28 / (1 + r)**3  # 第3次付款,折现3年
PV1 += 28 / (1 + r)**4  # 第4次付款,折现4年
PV1 += 28 / (1 + r)**5  # 第5次付款,折现5年

# 方案2的现值计算
PV2 = 5  # 2019年12月10日支付5万元,现值为5万元
PV2 += 25 / (1 + r)**1  # 第2次付款,折现1年
PV2 += 25 / (1 + r)**2  # 第3次付款,折现2年
PV2 += 25 / (1 + r)**3  # 第4次付款,折现3年
PV2 += 25 / (1 + r)**4  # 第5次付款,折现4年
PV2 += 25 / (1 + r)**5  # 第6次付款,折现5年

# 方案3的现值计算
PV3 = 10  # 2019年12月10日支付10万元,现值为10万元
PV3 += 15 / (1 + r)**0.5  # 第2次付款,折现0.5年
PV3 += 15 / (1 + r)**1  # 第3次付款,折现1年
PV3 += 15 / (1 + r)**1.5  # 第4次付款,折现1.5年
PV3 += 15 / (1 + r)**2  # 第5次付款,折现2年
PV3 += 15 / (1 + r)**2.5  # 第6次付款,折现2.5年
PV3 += 15 / (1 + r)**3  # 第7次付款,折现3年
PV3 += 15 / (1 + r)**3.5  # 第8次付款,折现3.5年

# 返回每个方案的现值
PV1, PV2, PV3

根据计算结果,各个方案的现值如下:

  • 方案1的现值:90.69万元

  • 方案2的现值:99.77万元

  • 方案3的现值:97.17万元

因此,选择方案1是最优的,因为它的现值最小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值