以春为序,敬此荣枯
—— 24.3.28
杨辉三角
给定一个非负整数
numRows
,生成「杨辉三角」的前numRows
行。在「杨辉三角」中,每个数是它左上方和右上方的数的和。
示例 1:
输入: numRows = 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例 2:
输入: numRows = 1 输出: [[1]]
方法一:数学
思路及算法:
杨辉三角,是二项式系数在三角形中的一种几何排列。它是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
如果能够知道一行杨辉三角,我们就可以根据每对相邻的值轻松计算出它的下一行
我们会生成整个triangle(三角形)列表,三角形的每一行都以子列表的形式存储
然后,我们检查行数为u0的特殊情况,否则我们返回[1]
如果 numRows > 0,那么我们用[1]作为第一行来初始化triangle,并按照如下方式继续填充
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> ret = new ArrayList<List<Integer>>(); # 构建三角形
for (int i = 0; i < numRows; ++i) {
List<Integer> row = new ArrayList<Integer>();
for (int j = 0; j <= i; ++j) {
if (j == 0 || j == i) { # 计算当前行时,第一个元素和最后一个元素都是1
row.add(1);
} else {
# 每一行三角的元素等于上一行此位置左边的元素与上一行此位置的元素之和
row.add(ret.get(i - 1).get(j - 1) + ret.get(i - 1).get(j));
}
}
# 将本行结果元素加入三角
ret.add(row);
}
return ret;
}
}
复杂度分析:
时间复杂度:O(numRows²),因为计算总数为1+2+3+…+numRows
空间复杂度:O(numRows²),因为每次计算都会被保留,所以空间复杂度规模与时间复杂度相同