失物不招领的机器学习数学基础

梯度

1、含义:

梯度就是方向去的导数的最大值,下降的快一点。
在这里插入图片描述
1)梯度是偏导方向的向量。
2)沿着偏导方向的向量能够取得最大值。
3)梯度就是变化最快,变化率最大的方向。
4)求取梯度大小的公式:在这里插入图片描述

2、梯度下降:

1)梯度下降法:沿着梯度下降的方向求解极小值。

梯度下降算法:在这里插入图片描述
python代码片段:

def gradient_descent(f, init_x, lr=0.01, epoch=100):
    x = init_x
    for i in range(epoch):
        grad = numerical_gradient(f, x) # 求导函数
        x -= lr * grad
    return x

其中,f是要求的函数,init_x是初始值,lr是learning rate,epoch是梯度法的重复次数,也就是计算多少次。
在这里插入图片描述

# 用定义法求导数
def numerical_gradient(f, x):
    h = 1e-4
    grad = np.zeros_like(x)
 
    for idx in range(x.size):
        temp = x[idx]
        # 计算f(x+h)
        x[idx] = temp + h
        fxh1 = f(x)
 
        # 计算f(x-h)
        x[idx] = temp - h
        fxh2 = f(x)
 
        grad[idx] = (fxh1 - fxh2)/(2 * h)
        x[idx] = temp
 
    return grad

2)梯度上升法:沿着梯度上升的方向求解极大值。
关于梯度的一些实际例子我们就回到课件上来看一下。

3、雅可比矩阵:

(1)含义:多维空间到多维空间映射的广义导数。每一行代表不同的函数分量,每一列代表不同函数分量对不同自变量的偏导,所构成的一个矩阵。
在这里插入图片描述

4、黑塞矩阵:

(1)含义:多维空间到一维空间映射的广义二阶导数。对梯度向量进行雅可比矩阵计算后的结果,是一个实对称矩阵。
在这里插入图片描述

凸函数

1、含义:

在这里插入图片描述
图例:

在这里插入图片描述

2、函数凹凸判别法:

在这里插入图片描述

3、注意:

1)凸函数不一定在所有点可导。
2)凸函数不一定存在极值点。
3)存在全局唯一极小值点的不一定是凸函数。

4、补充:

是否存在既凸有凹,或非凸非凹函数?
既凸又凹函数只有线性函数是,存在非凸非1凹函数。
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值