LeetCode-双指针-三数之和

618224d51d66b92b423588150f25f3a7-1746706818078-1-1746790482186-1-1746797747208-4

LeetCode-双指针-三数之和

✏️ 关于专栏:专栏用于记录 prepare for the coding test


📝 三数之和

🎯题目描述

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != kj != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。

**注意:**答案中不可以包含重复的三元组。

🔗题目链接:三数之和

🔍 输入输出示例

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。

示例 2:

输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。

示例 3:

输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。

🧩题目提示

  • 3 <= nums.length <= 3000
  • -105 <= nums[i] <= 105

🧪排序+双指针

  • 排序数组首先对数组进行排序,这样可以方便后续使用双指针进行查找,并且便于去重。

  • 固定一个数遍历数组,固定一个数 x = nums[i] ,然后在右侧区域 [i + 1, end] 中寻找两个数,使得三者之和为 0。

  • 使用双指针初始化两个指针:j = i + 1 (左指针)、 k = nums.size() - 1 (右指针)

  • 根据 nums[j] + nums[k] + x 的值,调整指针:

    • 如果和大于 0,说明需要减小和,因此将右指针 k 向左移动。

    • 如果和小于 0,说明需要增大和,因此将左指针 j 向右移动。

    • 如果和等于 0,记录该三元组,并跳过重复元素。

  • 跳过重复元素

    • 如果当前固定值 nums[i] 与前一个值相同,跳过当前值,避免重复解。
    • 在找到一个合法三元组后,继续移动 j 和 k ,跳过所有与 nums[j] 或 nums[k] 相同的元素。
  • 剪枝优化

    • 如果最小的三个数之和已经大于 0,后续不可能成立,直接退出循环。
    • 如果当前固定值 x 加上最大的两个数仍小于 0,说明 x 太小,直接跳过当前值。

2fdb0b04cc7d26a5ebce1d86d36454c

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        vector<vector<int>> ans;
        for(int i = 0;i < nums.size() - 2;i++){
            int x= nums[i];
            if(i && nums[i] == nums[i-1]) continue;
            if(x + nums[i + 1] + nums[i + 2] > 0) break; //优化一
            if(x + nums[nums.size() - 2] + nums[nums.size() - 1] < 0) continue; //优化二
            int j = i + 1;
            int k = nums.size() - 1;
            while(j < k){
                if(x+nums[j]+nums[k] > 0) k--;
                else if(x+nums[j]+nums[k] < 0) j++;
                else {
                ans.push_back({x,nums[j],nums[k]});
                j+=1;k-=1;
                while(j < k && nums[j] == nums[j - 1]){{j++;continue;}}
                while(k > j && nums[k] == nums[k + 1]){{k--;continue;}}
                }
            }
        }
        return ans;
    }
};

🌟 总结

本题的核心在于如何高效地找到所有满足条件的三元组,同时避免重复解。通过排序和双指针的方法,我们可以在 O ( n 2 ) O(n^2) O(n2) 的时间复杂度内解决问题,同时利用剪枝优化减少不必要的计算。

算法复杂度分析:

时间复杂度: O ( n 2 ) O(n^2) O(n2)
其中 n n n 是数组的长度。排序的时间复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn),双指针遍历的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。由于 O ( n 2 ) O(n^2) O(n2) 是主导项,因此总时间复杂度为 O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( 1 ) O(1) O(1)
除了存储结果的数组外,我们没有使用额外的空间。

解题关键点:

排序:
排序是解题的基础,它不仅方便双指针的使用,还便于后续的去重操作。

双指针:
固定一个数后,使用双指针在剩余部分查找另外两个数,使三者之和为 0。

去重:

跳过重复的固定值。

移动指针时跳过重复值,避免生成重复的三元组。

剪枝优化:

若固定值大于 0,可直接结束循环(因数组已排序,之后不可能出现和为 0)。

若当前三数和已超出目标,也可提前终止当前路径,减少不必要计算。

473a45227a39b7ec06f6525e7ebb85b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值