LeetCode-双指针-三数之和
✏️ 关于专栏:专栏用于记录
prepare for the coding test
。
📝 三数之和
🎯题目描述
给你一个整数数组
nums
,判断是否存在三元组[nums[i], nums[j], nums[k]]
满足i != j
、i != k
且j != k
,同时还满足nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为0
且不重复的三元组。**注意:**答案中不可以包含重复的三元组。
🔗题目链接:三数之和
🔍 输入输出示例
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
🧩题目提示
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
🧪排序+双指针
-
排序数组首先对数组进行排序,这样可以方便后续使用双指针进行查找,并且便于去重。
-
固定一个数遍历数组,固定一个数 x = nums[i] ,然后在右侧区域 [i + 1, end] 中寻找两个数,使得三者之和为 0。
-
使用双指针初始化两个指针:j = i + 1 (左指针)、 k = nums.size() - 1 (右指针)
-
根据 nums[j] + nums[k] + x 的值,调整指针:
-
如果和大于 0,说明需要减小和,因此将右指针 k 向左移动。
-
如果和小于 0,说明需要增大和,因此将左指针 j 向右移动。
-
如果和等于 0,记录该三元组,并跳过重复元素。
-
-
跳过重复元素
- 如果当前固定值 nums[i] 与前一个值相同,跳过当前值,避免重复解。
- 在找到一个合法三元组后,继续移动 j 和 k ,跳过所有与 nums[j] 或 nums[k] 相同的元素。
-
剪枝优化
- 如果最小的三个数之和已经大于 0,后续不可能成立,直接退出循环。
- 如果当前固定值 x 加上最大的两个数仍小于 0,说明 x 太小,直接跳过当前值。
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
sort(nums.begin(),nums.end());
vector<vector<int>> ans;
for(int i = 0;i < nums.size() - 2;i++){
int x= nums[i];
if(i && nums[i] == nums[i-1]) continue;
if(x + nums[i + 1] + nums[i + 2] > 0) break; //优化一
if(x + nums[nums.size() - 2] + nums[nums.size() - 1] < 0) continue; //优化二
int j = i + 1;
int k = nums.size() - 1;
while(j < k){
if(x+nums[j]+nums[k] > 0) k--;
else if(x+nums[j]+nums[k] < 0) j++;
else {
ans.push_back({x,nums[j],nums[k]});
j+=1;k-=1;
while(j < k && nums[j] == nums[j - 1]){{j++;continue;}}
while(k > j && nums[k] == nums[k + 1]){{k--;continue;}}
}
}
}
return ans;
}
};
🌟 总结
本题的核心在于如何高效地找到所有满足条件的三元组,同时避免重复解。通过排序和双指针的方法,我们可以在 O ( n 2 ) O(n^2) O(n2) 的时间复杂度内解决问题,同时利用剪枝优化减少不必要的计算。
算法复杂度分析:
时间复杂度:
O
(
n
2
)
O(n^2)
O(n2)
其中
n
n
n 是数组的长度。排序的时间复杂度为
O
(
n
log
n
)
O(n \log n)
O(nlogn),双指针遍历的时间复杂度为
O
(
n
2
)
O(n^2)
O(n2)。由于
O
(
n
2
)
O(n^2)
O(n2) 是主导项,因此总时间复杂度为
O
(
n
2
)
O(n^2)
O(n2)。
空间复杂度:
O
(
1
)
O(1)
O(1)
除了存储结果的数组外,我们没有使用额外的空间。
解题关键点:
排序:
排序是解题的基础,它不仅方便双指针的使用,还便于后续的去重操作。
双指针:
固定一个数后,使用双指针在剩余部分查找另外两个数,使三者之和为 0。
去重:
跳过重复的固定值。
移动指针时跳过重复值,避免生成重复的三元组。
剪枝优化:
若固定值大于 0,可直接结束循环(因数组已排序,之后不可能出现和为 0)。
若当前三数和已超出目标,也可提前终止当前路径,减少不必要计算。