LeetCode-双指针-接雨水

618224d51d66b92b423588150f25f3a7-1746706818078-1-1746790482186-1-1746797747208-4

LeetCode-双指针-接雨水

✏️ 关于专栏:专栏用于记录 prepare for the coding test


📝 接雨水

🎯题目描述

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

🔗题目链接:接雨水

🔍 输入输出示例

示例 1:

img

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)

示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

🧩题目提示

  • n == height.length
  • 1 <= n <= 2 * 104
  • 0 <= height[i] <= 105

🧪前后缀分解

75a70f4b5673ce003a4b0530ddcc49e
  • 用一个数组记录从左到右当前以及当前左边范围内的最大高度

  • 用一个数组记录从右到左当前以及当前右边范围内的最大高度

  • 遍历数组用当前位置左边/右边中较小的减去当前高度

image-20250513095819856

class Solution {
public:
    int trap(vector<int>& height) {
        vector<int>preRecord(height.size());
        vector<int>sufRecord(height.size());
        int curMax = 0;
        for(int i = 0;i < height.size();i++){
            curMax = max(height[i],curMax);
            preRecord[i] = curMax;
        }
        curMax = 0;
        for(int i = height.size() - 1;i >= 0;i--){
            curMax = max(height[i],curMax);
            sufRecord[i] = curMax;
        }
        int ans = 0;
        for(int i = 0;i < height.size();i++){
            ans += min(preRecord[i],sufRecord[i]) - height[i];
        }
        return ans;
    }
};

🧪相向双指针

  1. 用两个指针 leftright 从数组两端出发;

  2. 分别用 left_maxright_max 记录左右走过的最大高度;

  3. 每次比较:

    • 如果 left_max < right_max,说明左边是矮墙,决定积水高度:

      water += left_max - height[left]
      

      然后左指针右移;

    • 否则右边矮,右指针左移,进行相同处理。

因为当前能装多少水,是由矮的一边决定的,哪边小就先动哪边。

0873a2035e0764b794f6ae756ba2d6f
class Solution {
public:
    int trap(vector<int>& height) {
        int ans = 0,left = 0,right = height.size() - 1,pre_max = 0,suf_max = 0;
        while(left <= right){
            pre_max = max(pre_max,height[left]);
            suf_max = max(suf_max,height[right]);
            ans += pre_max < suf_max ? pre_max - height[left++] : suf_max - height[right--];
        }
        return ans;
    }
};

🧪单调栈

单调栈是一种特殊的栈结构,用于维护元素单调递增或单调递减的性质。

在本题中,我们使用单调递减栈:栈顶到栈底的元素(对应柱子的高度)是从高到低排列的。

我们要找的是所有“凹槽”区域,即:一个较高柱子 → 一个较低柱子 → 再一个较高柱子,中间就能形成积水结构。

找出所有的凹槽结构,这些地方会积水。
栈的作用是:帮助我们找到“当前柱子右边第一个比它高的柱子”以及“左边那个比它高的柱子”。

准备一个栈,存放的是柱子的下标

从左到右遍历每个柱子:

  • 如果当前柱子的高度小于栈顶柱子高度,说明还没形成凹槽,入栈;
  • 如果当前柱子高于栈顶柱子,说明凹槽右墙出现了,此时可以接水:
    • 弹出中间的柱子,记为 bottom
    • 栈顶现在是左墙,当前是右墙;
    • 计算宽度 = 当前索引 - 左墙索引 - 1
    • 计算高度 = min(左墙高度, 右墙高度) - bottom 高度
    • 乘起来就是这一段能接的水。

重复这个过程,直到遍历结束。

img
class Solution {
public:
    int trap(vector<int>& height) {
        int ans = 0;
        stack<int> st;
        for (int i = 0; i < height.size(); i++) {   ························
            while (!st.empty() && height[i] >= height[st.top()]) {
                int bottom_h = height[st.top()];
                st.pop();
                if (st.empty()) {
                    break;
                }
                int left = st.top();
                int dh = min(height[left], height[i]) - bottom_h; // 面积的高
                ans += dh * (i - left - 1);
            }
            st.push(i);
        }
        return ans;
    }
};

🌟 总结

方法原理通俗理解是否推荐特点与场景说明
前后缀最大每个柱子左右最高决定水面高度✅ 简单直观新手首选,代码可读性好
双指针左右两端往中间走,谁低谁先结算✅ 推荐空间复杂度最优,面试常用
单调栈模拟凹槽结构,左墙 - 凹槽 - 右墙三者一组✅ 进阶结构巧妙,适合算法进阶题目
🎯 刷题训练推荐(单调栈)

刷题顺序建议:

  1. 496. 下一个更大元素 I
  2. 503. 下一个更大元素 II ✅(循环数组)
  3. 739. 每日温度
  4. 84. 柱状图中最大矩形 🔥
  5. 42. 接雨水(本题) 🔥🔥
  6. 85. 最大矩形(二维拓展) 🔥🔥🔥

473a45227a39b7ec06f6525e7ebb85b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值