一个项目由若干个任务组成,任务之间有先后依赖顺序。项目经理需要设置一系列里程碑,在每个里程碑节点处检查任务的完成情况,并启动后续的任务。现给定一个项目中各个任务之间的关系,请你计算出这个项目的最早完工时间。
输入格式:
首先第一行给出两个正整数:项目里程碑的数量 N(≤100)和任务总数 M。这里的里程碑从 0 到 N−1 编号。随后 M 行,每行给出一项任务的描述,格式为“任务起始里程碑 任务结束里程碑 工作时长”,三个数字均为非负整数,以空格分隔。
输出格式:
如果整个项目的安排是合理可行的,在一行中输出最早完工时间;否则输出"Impossible"。
输入样例 1:
9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4
输出样例 1:
18
输入样例 2:
4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5
输出样例 2:
Impossible
思路: 题意就是求完成所有里程碑需要多少时间。需要用到 图 拓扑排序
拓扑排序: 简单来说,就是必须通过这个序列去依次完成任务,在形成的序列中,某一个元素,它的依赖关系一定在它前面
找最短工期,找最长 比如 有 0-1,0-2,0-2,这三条路,都要走,找最大的 让三条路同时走
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N=110;
queue<int>q;
int g[N][N];
int dist[N];
int d[N];
int n,m;
int main()
{
cin>>n>>m;
memset(g,-1,sizeof g);
while(m--)
{
int a,b,c;cin>>a>>b>>c;
g[a][b]=c;
d[b]++;
}
for(int i=0;i<n;i++)
if(d[i]==0) q.push(i);
int ans=0;
int num=0;
while(q.size())
{
int t=q.front();
num++;
q.pop();
for(int i=0;i<n;i++)
{
if(g[t][i]!=-1)
{
d[i]--;
if(d[i]==0)q.push(i);
dist[i]=max(dist[i],dist[t]+g[t][i]);
ans=max(ans,dist[i]);
}
}
}
if(num!=n) printf("Impossible");
else cout<<ans<<endl;
return 0;
}