目录
质数
试除法判定质数
给定 n 个正整数 ai,判定每个数是否是质数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
共 n 行,其中第 i 行输出第 i 个正整数 ai 是否为质数,是则输出 Yes
,否则输出 No
。
数据范围
1≤n≤100
1≤ai≤2^31−1
输入样例:
2
2
6
输出样例:
Yes
No
#include<iostream>
using namespace std;
//试除法 O(sqrt(n))
bool prime(int x)
{
if(x<=1) return false;
for(int i=2;i<=x/i;i++)
{
if(x%i==0) return false;
}
return true;
}
int main()
{
int n;cin>>n;
while(n--)
{
int a;cin>>a;
if(prime(a)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}
分解质因数
给定 n 个正整数 ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
对于每个正整数 ai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。
每个正整数的质因数全部输出完毕后,输出一个空行。
数据范围
1≤n≤100,
2≤ai≤2×10^9
输入样例:
2
6
8
输出样例:
2 1
3 1
2 3
x的质因子最多只包含一个大于根号x的数,如果有两个,两个质因数的乘积会大于x,矛盾
i 从 2 遍历到 根号x。 用 x / i,如果余数为 0,则 i 是一个质因
s 表示质因子 i 的指数,x /= i 为 0,则 s++, x = x / i
最后检查是否有大于 根号x 的质因子,如果有,输出
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
void divide(int x)
{
for(int i=2;i<=x/i;i++)
{
int s=0;
if(x%i==0)
{
while(x%i==0)
{
s++;
x/=i;
}
printf("%d %d\n",i,s);
}
}
if(x>1) printf("%d 1\n",x);
printf("\n");
}
int main()
{
int n;cin>>n;
while(n--)
{
int x;cin>>x;
divide(x);
}
return 0;
}
Divide and Equalize(cf)
考点分解质因数
给出了一个由n个正整数组成的数组a。可以对其执行以下操作:选择一对元素ai和aj(1≤i,j≤n ,i≠j);选择整数ai的除数之一,即整数x,使得ai mod x=0;将ai替换为ai/x,将aj替换为aj‧x。
通过应用一定次数的运算(可能为零)来确定是否可以使数组中的所有元素都相同。
输入数据:
7
5
100 2 50 10 1
3
1 1 1
4
8 2 4 2
4
30 50 27 20
2
75 40
2
4 4
3
2 3 1
输出数据:
YES YES NO YES NO YES NO
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
map<int,int>mp;
int main()
{
int t;cin>>t;
while(t--)
{
int n;cin>>n;
mp.clear();
for(int i=1;i<=n;i++)
{
int x;cin>>x;
if(x==1) continue;
for(int j=2;j<=x/j;j++)
{
if(x%j==0)
{
while(x%j==0)
{
mp[j]++;
x/=j;
}
}
}
if(x>1) mp[x]++;
}
int flag=0;
for(auto it:mp)
{
if(it.second%n!=0)
{
flag=1;
break;
}
}
if(flag) cout<<"NO"<<endl;
else cout<<"YES"<<endl;
}
return 0;
}
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
const int N=1e4+10;
int a[N],b[N];
bool prime(int x)
{
for(int i=2;i<=x/i;i++)
{
if(x%i==0) return false;
}
return true;
}
map<int,int>mp;
int main()
{
int t;cin>>t;
while(t--)
{
int n;cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
mp.clear();
for(int i=1;i<=n;i++)
{
if(a[i]==1) mp[1]++;
else
{
if(prime(a[i])) mp[a[i]]++;
else
{
int num=a[i];
for(int j=2;j<=num/j;j++)
{
if(num%j==0)
{
while(num%j==0)
{
mp[j]++;
num/=j;
}
}
}
if(num>1) mp[num]++;
}
}
}
int flag=0;
for(auto t:mp)
{
if(t.second%n!=0&&t.first>1)
{
flag=1;
break;
}
}
if(!flag) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}
筛质数
10000000(10^7)
最普通的筛法:1.606
埃及筛:0,316
线性筛:0.098
100000000(10^8)
最普通的筛法:28.134
埃及筛:3.756
线性筛:0.948
最普通的筛法 O(nlogn)
void Prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i])prime[cnt++]=i;//把素数存起来
for(int j=i;j<=n;j+=i) st[j]=1;//不管是合数还是素数都用来筛掉后面的数
}
}
埃氏筛法 O(nloglogn)
void Prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i])
{
prime[cnt++]=i;//将素数存起来
for(int j=i;j<=n;j+=i) st[j]=1;//用质数来筛掉后面的数
}
}
}
线性筛法 O(n)
线性筛法用最小的质因数筛掉 不重复筛 只筛一遍 故O(n)
void Prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i]) prime[cnt++]=i;
for(int j=0;prime[j]<=n/i;j++)//i*prime[j]<=n
{
st[prime[j]*i]=1;
//1)当i%primes[j]!=0时,说明此时遍历到的primes[j]不是i的质因子,那么只可能是此时的primes[j]<i的
//最小质因子,所以primes[j]*i的最小质因子就是primes[j];
//2)当有i%primes[j]==0时,说明i的最小质因子是primes[j],因此primes[j]*i的最小质因子也就应该是
//prime[j],之后接着用st[primes[j+1]*i]=true去筛合数时,就不是用最小质因子去更新了,因为i有最小
//质因子primes[j]<primes[j+1],此时的primes[j+1]不是primes[j+1]*i的最小质因子,此时就应该
//退出循环,避免之后重复进行筛选。
if(i%prime[j]==0) break;
}
}
}
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6+10;
int prime[N];
int st[N];
int cnt;
void Prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i]) prime[cnt++]=i;
for(int j=0;prime[j]<=n/i;j++)//i*prime[j]<=n
{
st[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
}
int main()
{
int n;cin>>n;
Prime(n);
cout<<cnt<<endl;
return 0;
}
约数
试除法求约数(nlogm)
给定 n 个正整数 ai,对于每个整数 ai,请你按照从小到大的顺序输出它的所有约数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个整数 ai。
输出格式
输出共 n 行,其中第 i 行输出第 i 个整数 ai 的所有约数。
数据范围
1≤n≤100,
1≤ai≤2×10^9
输入样例:
2
6
8
输出样例:
1 2 3 6
1 2 4 8
for(int i=1;i<=x/i;i++)
{
if(x%i==0)
{
v.push_back(i);
if(i*i==x) continue;
else v.push_back(x/i);
}
}
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e8;
int a[N];
void print(int x)
{
int cnt=0;
for(int i=1;i<=x/i;i++)
{
if(x%i==0)
{
a[cnt++]=i;
if(i*i==x) continue;
else a[cnt++]=x/i;
}
}
sort(a,a+cnt);
for(int i=0;i<cnt;i++) cout<<a[i]<<" ";
cout<<endl;
}
int main()
{
int t;cin>>t;
while(t--)
{
int n;cin>>n;
print(n);
}
}
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
void print(int x)
{
vector<int>v;
for(int i=1;i<=x/i;i++)
{
if(x%i==0)
{
v.push_back(i);
if(i*i==x) continue;
else v.push_back(x/i);
}
}
sort(v.begin(),v.end());
for(int i=0;i<v.size();i++) cout<<v[i]<<" ";
cout<<endl;
}
int main()
{
int t;cin>>t;
while(t--)
{
int n;cin>>n;
print(n);
}
}
约数个数
给定 n 个正整数 ai,请你输出这些数的乘积的约数个数,答案对 10^9+7 取模。
输入格式
第一行包含整数 n。
接下来 n行,每行包含一个整数 ai。
输出格式
输出一个整数,表示所给正整数的乘积的约数个数,答案需对 10^9+7 取模。
数据范围
1≤n≤100
1≤ai≤2×10^9
输入样例:
3
2
6
8
输出样例:
12
N = (p1^x1)(p^x2)(p3^x3)…(pk^xk),其中pi为质数。
则N的约数个数为:(x1+1)(x2+1)(x3+1)…(xk+1)
N中的约数
d=(p1^xx1)(p^xx2)(p^xx3)...(pk^xxk) ----(xx1<=x1 xx2<=x2...xxk<=xk)
乘法原理
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
map<int,int>mp;
const ll mod=1e9+7;
int main()
{
int t;cin>>t;
while(t--)
{
int n; cin>>n;
for(int i=2;i<=n/i;i++)
{
if(n%i==0)
{
while(n%i==0)
{
n/=i;
mp[i]++;
}
}
}
if(n>1) mp[n]++;
}
ll sum=1;
for(auto it:mp)
{
sum*=(it.second+1);
sum%=mod;
}
cout<<sum<<endl;
return 0;
}
约数之和
给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 10^9+7 取模。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个整数 ai。
输出格式
输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。
数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:
3
2
6
8
输出样例:
252
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
map<int,int>mp;
int main()
{
int n;cin>>n;
while(n--)
{
int x;cin>>x;
for(int i=2;i<=x/i;i++)
{
if(x%i==0)
{
while(x%i==0)
{
x/=i;
mp[i]++;
}
}
}
if(x>1) mp[x]++;
}
ll res=1;
for(auto it:mp)
{
ll a=it.first,b=it.second;
ll t=1;
while(b--)
{
t=(t*a+1)%mod;
}
res=res*t%mod;
}
cout<<res<<endl;
return 0;
}
最大公约数----- __gcd(,)
最小公倍数 ----- 两数相乘/最大公约数
欧拉函数
欧拉函数
给定 n 个正整数 ai,请你求出每个数的欧拉函数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
输出共 n 行,每行输出一个正整数 ai 的欧拉函数。
数据范围
1≤n≤100
1≤ai≤2×10^9
输入样例:
3
3
6
8
输出样例:
2
2
4
n * (1 - 1 / pi)-->n/pi*(pi-1)
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int main()
{
int n;cin>>n;
while(n--)
{
int x;cin>>x;
ll res=x;
for(int i=2;i<=x/i;i++)
{
if(x%i==0)
{
res=res/i*(i-1);
while(x%i==0) x/=i;
}
}
if(x>1) res=res/x*(x-1);
cout<<res<<endl;
}
}
筛法求欧拉函数
给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。
输入格式
共一行,包含一个整数 n。
输出格式
共一行,包含一个整数,表示 1∼n中每个数的欧拉函数之和。
数据范围
1≤n≤10^6
输入样例:
6
输出样例:
12
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+10;
int primes[N],cnt;
int phi[N];
bool st[N];
int n;
void get_eulers(int n)
{
phi[1]=1;
for(int i=2;i<=n;i++)
{
if(!st[i])
{
primes[cnt++]=i;
phi[i]=i-1;
}
for(int j=0;primes[j]<=n/i;j++)
{
st[primes[j]*i]=1;
if(i%primes[j]==0)
{
phi[i*primes[j]]=primes[j]*phi[i];
break;
}
else phi[i*primes[j]]=(primes[j]-1)*phi[i];
}
}
}
int main()
{
cin>>n;
get_eulers(n);
ll res=0;
for(int i=1;i<=n;i++) res+=phi[i];
cout<<res<<endl;
return 0;
}
快速幂
快速幂
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
void qmi(int a,int b,int p)
{
ll res=1;
while(b)
{
if(b&1) res=res*a%p;
b/=2;
a=(ll)a*a%p;
}
cout<<res<<endl;
}
int main()
{
int n;scanf("%d",&n);
while(n--)
{
int a,b,p;
scanf("%d%d%d",&a,&b,&p);
qmi(a,b,p);
}
return 0;
}
快速幂求逆元
#include <iostream>
using namespace std;
typedef long long LL;
LL qmi(int a, int b, int p)
{
LL res = 1;
while(b){
if(b & 1) res = res * a % p;
a = (LL)a * a % p;
b >>= 1;
}
return res;
}
int main()
{
int n; cin >> n;
while(n --){
int a, p;
cin >> a >> p;
if(a % p == 0) puts("impossible");
else cout << qmi(a, p - 2, p) << endl;
}
return 0;
}