数学知识()

目录

质数

试除法判定质数

 分解质因数

 Divide and Equalize(cf)

筛质数

约数

试除法求约数(nlogm)

约数个数

 约数之和

欧拉函数

欧拉函数

 筛法求欧拉函数

快速幂

快速幂

快速幂求逆元 

质数

试除法判定质数

给定 n 个正整数 ai,判定每个数是否是质数。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个正整数 ai。

输出格式

共 n 行,其中第 i 行输出第 i 个正整数 ai 是否为质数,是则输出 Yes,否则输出 No

数据范围

1≤n≤100
1≤ai≤2^31−1

输入样例:

2
2
6

输出样例:

Yes
No
#include<iostream>
using namespace std;
//试除法 O(sqrt(n))
bool prime(int x)
{
    if(x<=1) return false;
    for(int i=2;i<=x/i;i++)
    {
        if(x%i==0) return false;
    }
    return true;
}
int main()
{
    int n;cin>>n;
    while(n--)
    {
        int a;cin>>a;
        if(prime(a)) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
    return 0;
}

 分解质因数

给定 n 个正整数 ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个正整数 ai。

输出格式

对于每个正整数 ai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。

每个正整数的质因数全部输出完毕后,输出一个空行。

数据范围

1≤n≤100,
2≤ai≤2×10^9

输入样例:

2
6
8

输出样例:

2 1
3 1

2 3

x的质因子最多只包含一个大于根号x的数,如果有两个,两个质因数的乘积会大于x,矛盾

 i 从 2 遍历到 根号x。 用 x / i,如果余数为 0,则 i 是一个质因

s 表示质因子 i 的指数,x /= i 为 0,则 s++, x = x / i

最后检查是否有大于 根号x 的质因子,如果有,输出

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
void divide(int x)
{
    for(int i=2;i<=x/i;i++)
    {
        int s=0;
        if(x%i==0)
        {
            while(x%i==0)
            {
                s++;
                x/=i;
            }
            printf("%d %d\n",i,s);
        }
    }
    if(x>1) printf("%d 1\n",x);
    printf("\n");
}
int main()
{
    int n;cin>>n;
    while(n--)
    {
        int x;cin>>x;
        divide(x);
    }
    return 0;
}

 Divide and Equalize(cf)

考点分解质因数

给出了一个由n个正整数组成的数组a。可以对其执行以下操作:选择一对元素ai和aj(1≤i,j≤n ,i≠j);选择整数ai的除数之一,即整数x,使得ai mod x=0;将ai替换为ai/x,将aj替换为aj‧x。

通过应用一定次数的运算(可能为零)来确定是否可以使数组中的所有元素都相同。 

输入数据: 

7

5

100 2 50 10 1

3

1 1 1

4

8 2 4 2

4

30 50 27 20

2

75 40

2

4 4

3

2 3 1

输出数据: 

YES
YES
NO
YES
NO
YES
NO
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
map<int,int>mp;
int main()
{
    int t;cin>>t;
    while(t--)
    {
    	int n;cin>>n;
    	mp.clear();
    	for(int i=1;i<=n;i++)
    	{
    		int x;cin>>x;
    		if(x==1) continue;
    		for(int j=2;j<=x/j;j++)
    		{
    			if(x%j==0)
    			{
    				while(x%j==0)
    				{
    					mp[j]++;
    					x/=j;
					}
				}
			}
			if(x>1) mp[x]++;
		}
		int flag=0;
		for(auto it:mp)
		{
			if(it.second%n!=0)
			{
				flag=1;
				break;
			}
		}
		if(flag) cout<<"NO"<<endl;
		else cout<<"YES"<<endl;
	}
	return 0;
}

#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
const int N=1e4+10;
int a[N],b[N];
bool prime(int x)
{
	for(int i=2;i<=x/i;i++)
	{
		if(x%i==0) return false;
	}
	return true;
}
map<int,int>mp;
int main()
{
	int t;cin>>t;
	while(t--)
	{
		int n;cin>>n;
		for(int i=1;i<=n;i++) cin>>a[i];
		mp.clear();
		for(int i=1;i<=n;i++)
		{
			if(a[i]==1) mp[1]++;
			else
			{
				if(prime(a[i])) mp[a[i]]++;
				else
				{
					int num=a[i];
					for(int j=2;j<=num/j;j++)
					{
						if(num%j==0)
						{
							while(num%j==0)
							{
								mp[j]++;
								num/=j;
							}
						}
					}
					if(num>1) mp[num]++;
				}
			}
		}
			int flag=0;
		 for(auto t:mp)
		 {
		 	if(t.second%n!=0&&t.first>1)
		 	{
		 		flag=1;
		 		break;
			 }
		 }
			if(!flag) cout<<"YES"<<endl;
			else cout<<"NO"<<endl;
		
	}
	return 0;
}

筛质数

10000000(10^7)

最普通的筛法:1.606
埃及筛:0,316
线性筛:0.098
100000000(10^8)

最普通的筛法:28.134
埃及筛:3.756
线性筛:0.948

最普通的筛法 O(nlogn)

void Prime(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])prime[cnt++]=i;//把素数存起来
        for(int j=i;j<=n;j+=i) st[j]=1;//不管是合数还是素数都用来筛掉后面的数
    }
}

 埃氏筛法 O(nloglogn)

void Prime(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            prime[cnt++]=i;//将素数存起来
            for(int j=i;j<=n;j+=i) st[j]=1;//用质数来筛掉后面的数
        }
        
    }
}

 线性筛法 O(n)

线性筛法用最小的质因数筛掉 不重复筛 只筛一遍 故O(n) 

void Prime(int n)
{
    for(int i=2;i<=n;i++)
    {
       if(!st[i]) prime[cnt++]=i;
       for(int j=0;prime[j]<=n/i;j++)//i*prime[j]<=n
       {
           st[prime[j]*i]=1;
           //1)当i%primes[j]!=0时,说明此时遍历到的primes[j]不是i的质因子,那么只可能是此时的primes[j]<i的
            //最小质因子,所以primes[j]*i的最小质因子就是primes[j];
            //2)当有i%primes[j]==0时,说明i的最小质因子是primes[j],因此primes[j]*i的最小质因子也就应该是
            //prime[j],之后接着用st[primes[j+1]*i]=true去筛合数时,就不是用最小质因子去更新了,因为i有最小
            //质因子primes[j]<primes[j+1],此时的primes[j+1]不是primes[j+1]*i的最小质因子,此时就应该
            //退出循环,避免之后重复进行筛选。
           if(i%prime[j]==0) break;
       }
        
    }
}

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6+10;
int prime[N];
int st[N];
int cnt;
void Prime(int n)
{
    for(int i=2;i<=n;i++)
    {
       if(!st[i]) prime[cnt++]=i;
       for(int j=0;prime[j]<=n/i;j++)//i*prime[j]<=n
       {
           st[prime[j]*i]=1;
           if(i%prime[j]==0) break;
       }
        
    }
}
int main()
{
    int n;cin>>n;
    Prime(n);
    cout<<cnt<<endl;
    return 0;
}

约数

试除法求约数(nlogm)

给定 n 个正整数 ai,对于每个整数 ai,请你按照从小到大的顺序输出它的所有约数。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式

输出共 n 行,其中第 i 行输出第 i 个整数 ai 的所有约数。

数据范围

1≤n≤100,
1≤ai≤2×10^9

输入样例:

2
6
8

输出样例:

1 2 3 6 
1 2 4 8 
for(int i=1;i<=x/i;i++)
    {
        if(x%i==0)
        {
            v.push_back(i);
            if(i*i==x) continue;
            else v.push_back(x/i);
        }
    }
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e8;
int a[N];
void print(int x)
{
    int cnt=0;
    for(int i=1;i<=x/i;i++)
    {
        if(x%i==0)
        {
            a[cnt++]=i;
            if(i*i==x) continue;
            else a[cnt++]=x/i;
        }
    }
    sort(a,a+cnt);
    for(int i=0;i<cnt;i++) cout<<a[i]<<" ";
    cout<<endl;
}
int main()
{
    int t;cin>>t;
    while(t--)
    {
        int n;cin>>n;
        print(n);
    }
}
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
void print(int x)
{
    vector<int>v;
    for(int i=1;i<=x/i;i++)
    {
        if(x%i==0)
        {
            v.push_back(i);
            if(i*i==x) continue;
            else v.push_back(x/i);
        }
    }
    sort(v.begin(),v.end());
    for(int i=0;i<v.size();i++) cout<<v[i]<<" ";
    cout<<endl;
}
int main()
{
    int t;cin>>t;
    while(t--)
    {
        int n;cin>>n;
        print(n);
    }
}

约数个数

给定 n 个正整数 ai,请你输出这些数的乘积的约数个数,答案对 10^9+7 取模。

输入格式

第一行包含整数 n。

接下来 n行,每行包含一个整数 ai。

输出格式

输出一个整数,表示所给正整数的乘积的约数个数,答案需对 10^9+7 取模。

数据范围

1≤n≤100
1≤ai≤2×10^9

输入样例:

3
2
6
8

输出样例:

12

 N = (p1^x1)(p^x2)(p3^x3)…(pk^xk),其中pi为质数。

则N的约数个数为:(x1+1)(x2+1)(x3+1)…(xk+1)

N中的约数

d=(p1^xx1)(p^xx2)(p^xx3)...(pk^xxk) ----(xx1<=x1 xx2<=x2...xxk<=xk)

乘法原理

#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
map<int,int>mp;
const ll mod=1e9+7;
int main()
{
    int t;cin>>t;
    while(t--)
    {
        int n; cin>>n;
        for(int i=2;i<=n/i;i++)
        {
            if(n%i==0)
            {
               while(n%i==0)
               {
                n/=i;
                mp[i]++;
               }
            }
        }
        if(n>1) mp[n]++;
    }
    ll sum=1;
    for(auto it:mp)
    {
        sum*=(it.second+1);
        sum%=mod;
    }
    cout<<sum<<endl;
    return 0;
}

 约数之和

给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 10^9+7 取模。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式

输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。

数据范围

1≤n≤100,
1≤ai≤2×109

输入样例:

3
2
6
8

输出样例:

252

#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
map<int,int>mp;
int main()
{
   int n;cin>>n;
   while(n--)
   {
       int x;cin>>x;
       for(int i=2;i<=x/i;i++)
       {
           if(x%i==0)
           {
               while(x%i==0)
               {
                   x/=i;
                   mp[i]++;
               }
           }
       }
       if(x>1) mp[x]++;
   }
   ll res=1;
   for(auto it:mp)
   {
       ll a=it.first,b=it.second;
       ll t=1;
       while(b--)
       {
           t=(t*a+1)%mod;
       }
       res=res*t%mod;
   }
   cout<<res<<endl;
   return 0;
}

 最大公约数----- __gcd(,)

最小公倍数 ----- 两数相乘/最大公约数


欧拉函数

欧拉函数

给定 n 个正整数 ai,请你求出每个数的欧拉函数。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个正整数 ai。

输出格式

输出共 n 行,每行输出一个正整数 ai 的欧拉函数。

数据范围

1≤n≤100
1≤ai≤2×10^9

输入样例:

3
3
6
8

输出样例:

2
2
4

 

n * (1 - 1 / pi)-->n/pi*(pi-1) 

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int main()
{
    int n;cin>>n;
    while(n--)
    {
        int x;cin>>x;
        ll res=x;
        for(int i=2;i<=x/i;i++)
        {
            if(x%i==0)
            {
                res=res/i*(i-1);
                while(x%i==0) x/=i;
            }
        }
        if(x>1) res=res/x*(x-1);
        cout<<res<<endl;
    }
}

 筛法求欧拉函数

给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示 1∼n中每个数的欧拉函数之和。

数据范围

1≤n≤10^6

输入样例:

6

输出样例:

12

 

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+10;
int primes[N],cnt;
int phi[N];
bool st[N];
int n;
void get_eulers(int n)
{
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            primes[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;primes[j]<=n/i;j++)
        {
            st[primes[j]*i]=1;
            if(i%primes[j]==0)
            {
                phi[i*primes[j]]=primes[j]*phi[i];
                break;
            }
            else phi[i*primes[j]]=(primes[j]-1)*phi[i];
        }
    }
}
int main()
{
    cin>>n;
    get_eulers(n);
    ll res=0;
    for(int i=1;i<=n;i++) res+=phi[i];
    cout<<res<<endl;
    return 0;
}

快速幂

快速幂

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
void qmi(int a,int b,int p)
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%p;
        b/=2;
        a=(ll)a*a%p;
    }
    cout<<res<<endl;
}
int main()
{
    int n;scanf("%d",&n);
    while(n--)
    {
        int a,b,p;
        scanf("%d%d%d",&a,&b,&p);
        qmi(a,b,p);
    }
    return 0;
}

快速幂求逆元 

#include <iostream>
using namespace std;
typedef long long LL;

LL qmi(int a, int b, int p)
{
    LL res = 1;
    while(b){
        if(b & 1) res = res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int main()
{
    int n; cin >> n;
    while(n --){
        int a, p;
        cin >> a >> p;
        if(a % p == 0) puts("impossible");
        else cout << qmi(a, p - 2, p) << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值