Codeforces Round 936 (Div. 2)

文章讲述了如何使用C++解决一个关于给定树的优化问题,目标是在删除k条边后,使得k+1个联通块中最小节点数最大化。通过二分查找和深度优先搜索策略实现。
摘要由CSDN通过智能技术生成

C. Tree Cutting

题意:给定一棵树,需要删除 k 条边,使得 k+1 个联通块中的最小结点数最大。求出这个最大值

思路:求最小值最大--想到二分答案--然后深搜满足条件的连通块是否大于k即可

#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int N=2e5+10;
vector<int>v[N];
int n,k,cnt;
dfs(int u,int father,int mid)
{
	//返回的是每个子树节点的个数 若有子树节点符合mid 则切一刀 返回0
	int res=1;//自身的节点个数为1 从上到下 从下返回 记录节点个数
	for(int i=0;i<v[u].size();i++)
	{
		int j=v[u][i];
		if(j==father) continue;//如果是自己的父亲节点就不深搜下取
		res+=dfs(j,u,mid);
	}
	if(res>=mid)
	{
		res=0;
		cnt++;
    }
    return res;
}
bool check(int mid)
{
	cnt=0;
	dfs(1,0,mid);
	if(cnt>k) return true;
	return false;
}
int main()
{
	int t;cin>>t;
	while(t--)
	{
		cin>>n>>k;
		for(int i=1;i<=n;i++) v[i].clear();
		for(int i=1;i<n;i++)
		{
			int a,b;cin>>a>>b;
			v[a].push_back(b);
			v[b].push_back(a);
		}
		int l=0,r=n+1;
		while(l<r)
		{
			int mid=(l+r+1)>>1;
			if(check(mid)) l=mid;
			else r=mid-1;
		}
		cout<<l<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值