模拟散列表
维护一个集合,支持如下几种操作:
I x
,插入一个整数 x;Q x
,询问整数 x 是否在集合中出现过;
现在要进行 N 次操作,对于每个询问操作输出对应的结果。
输入格式
第一行包含整数 N,表示操作数量。
接下来 N 行,每行包含一个操作指令,操作指令为 I x
,Q x
中的一种。
输出格式
对于每个询问指令 Q x
,输出一个询问结果,如果 x 在集合中出现过,则输出 Yes
,否则输出 No
。
每个结果占一行。
数据范围
1≤N≤10^5
−10^9≤x≤10^9
输入样例:
5
I 1
I 2
I 3
Q 2
Q 5
输出样例:
Yes
No
拉链法
开放寻址法
拉链法
#include<iostream>
#include<cstring>
using namespace std;
const int N=1e5+3;// 取大于1e5的第一个质数,取质数冲突的概率最小
int h[N],e[N],ne[N],idx; //邻接表
void insert(int x)
{
// c++中如果是负数 那他取模也是负的 所以 加N 再 %N 就一定是一个正数
int k=(x%N+N)%N;
e[idx]=x;
ne[idx]=h[k];
h[k]=idx;
idx++;
}
bool find(int x)
{
//用上面同样的 Hash函数 讲x映射到 从 0-1e5 之间的数
int k=(x%N+N)%N;
for(int i=h[k];i!=-1;i=ne[i])
{
if(e[i]==x) return true;
}
return false;
}
int main()
{
memset(h,-1,sizeof h); //将槽先清空 空指针一般用 -1 来表示
int n;cin>>n;
while(n--)
{
char op;cin>>op;
int x;cin>>x;
if(op=='I') insert(x);
else
{
if(find(x)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}
return 0;
}
开放寻址法
#include<iostream>
#include<cstring>
using namespace std;
//开放寻址法一般开 数据范围的 2~3倍, 这样大概率就没有冲突了
//大于数据范围的第一个质数 规定空指针为 null 0x3f3f3f3f
const int N=2e5+3,null=0x3f3f3f3f;
int h[N];
int find(int x)
{
int k=(x%N+N)%N;
while(h[k]!=null&&h[k]!=x)
{
k++;
if(k==N) k=0;
}
return k;//如果这个位置是空的, 则返回的是他应该存储的位置
}
int main()
{
memset(h,0x3f,sizeof h); //规定空指针为 0x3f3f3f3f
int n;cin>>n;
while(n--)
{
char op;cin>>op;
int x;cin>>x;
int k=find(x);
if(op=='I') h[k]=x;
else
{
if(h[k]==x) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}
return 0;
}
字符串哈希
给定一个长度为 n 的字符串,再给定 m 个询问,每个询问包含四个整数 l1,r1,l2,r2,请你判断 [l1,r1] 和 [l2,r2]这两个区间所包含的字符串子串是否完全相同。
字符串中只包含大小写英文字母和数字。
输入格式
第一行包含整数 n 和 m,表示字符串长度和询问次数。
第二行包含一个长度为 n 的字符串,字符串中只包含大小写英文字母和数字。
接下来 m 行,每行包含四个整数 l1,r1,l2,r2,表示一次询问所涉及的两个区间。
注意,字符串的位置从 11 开始编号。
输出格式
对于每个询问输出一个结果,如果两个字符串子串完全相同则输出 Yes
,否则输出 No
。
每个结果占一行。
数据范围
1≤n,m≤10^5
输入样例:
8 3
aabbaabb
1 3 5 7
1 3 6 8
1 2 1 2
输出样例:
Yes
No
Yes
#include<iostream>
#include<cstring>
using namespace std;
const int N=1000010,P=131;
typedef unsigned long long ULL;
char str[N];
ULL p[N],h[N];
// h[i]前i个字符的hash值
// 字符串变成一个p进制数字,体现了字符+顺序,需要确保不同的字符串对应不同的数字
// P = 131 或 13331 Q=2^64,在99%的情况下不会出现冲突
// 使用场景: 两个字符串的子串是否相同
ULL get(int l,int r)
{
return h[r]-h[l-1]*p[r-l+1];
}
int main()
{
int n,m;cin>>n>>m>>str+1;
p[0]=1;
//字符串从1开始编号,h[1]为前一个字符的哈希值
for(int i=1;i<=n;i++)
{
p[i]=p[i-1]*P;
h[i]=h[i-1]*P+str[i]; //前缀和求整个字符串的哈希值
}
while(m--)
{
int l1,r1,l2,r2;cin>>l1>>r1>>l2>>r2;
if(get(l1,r1)==get(l2,r2)) puts("Yes");
else puts("No");
}
return 0;
}