间谍网络(C++,强连通分量,缩点)

文章描述了一种策略来决定是否能控制一个由间谍组成的网络,其中部分间谍可被贿赂。通过构建有向图并应用深度优先搜索(DFS)找到环,然后进行拓扑排序,确定最小花费来控制整个网络。当无法控制时,会输出无法控制的间谍编号。
摘要由CSDN通过智能技术生成

题目描述

由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果 A 间谍手中掌握着关于 B 间谍的犯罪证据,则称 A 可以揭发 B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。

我们的反间谍机关提供了一份资料,包括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有 n n n 个间谍( n n n 不超过 3000 3000 3000),每个间谍分别用 1 1 1 3000 3000 3000 的整数来标识。

请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。

输入格式

第一行只有一个整数 n n n

第二行是整数 p p p。表示愿意被收买的人数, 1 ≤ p ≤ n 1\le p\le n 1pn

接下来的 p p p 行,每行有两个整数,第一个数是一个愿意被收买的间谍的编号,第二个数表示他将会被收买的数额。这个数额不超过 20000 20000 20000

紧跟着一行只有一个整数 r r r 1 ≤ r ≤ 8000 1\le r\le8000 1r8000。然后 r r r 行,每行两个正整数,表示数对 ( A , B ) (A, B) (A,B) A A A 间谍掌握 B B B 间谍的证据。

输出格式

如果可以控制所有间谍,第一行输出 YES,并在第二行输出所需要支付的贿金最小值。否则输出 NO,并在第二行输出不能控制的间谍中,编号最小的间谍编号。

样例 #1

样例输入 #1

3
2
1 10
2 100
2
1 3
2 3

样例输出 #1

YES
110

样例 #2

样例输入 #2

4
2
1 100
4 200
2
1 2
3 4

样例输出 #2

NO
3

解题思路:

先来分析一下题意:

间谍分为两类:可收买的,不可收买的

可收买的间谍可以用钱来控制,或者通过其他间谍的情报来控制

不可收买的间谍只能通过其他间谍的情报来控制

题意说明完毕,接下来讲解解题思路:

因为可收买的间谍有两种控制方式,所以贿金存在最小值

先给出两个易于理解的事实:

如果把间谍网络抽象为一张图,以揭发关系为有向边

1)假设这张图无环,那么对于每条链,我们一定会选择链头

2)假设这张图是一个环,那么我们一定会选择收买贿金最少的间谍

基于这两个简单的事实,我们可以一个环中的所有间谍合并为一个间谍,取其中贿金最小值作为新间谍的贿金,同时记录环中索引最小值,新节点与是原环等价的

处理之后形成一张无环图,遍历所有入度为 0 0 0的节点

如果可以贿赂则累加贿金,反之将其加入一个队列中(用于维护不可控间谍)

若队列为空,即所有间谍都可控,那么输出YES和累加和

反之,进行拓扑排序:取出队首,删除队首节点,减少相临节点入度

如果入度为0 && 不可贿赂(可以证明,这就是不可控间谍的充分必要条件),将其加入队列

循环执行至队列为空

最后输出NO和所有被删除节点记录的索引中的最小值

AC代码如下

#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
const int max_n = 3000;
const int max_m = 8e3;
const int NaN = 0x3F3F3F3F;

int n;
//链式前向星
int able[max_n + 1];
struct edge { int v, next; }edges[max_m];
int tot = -1;
int head[max_n + 1];
//tarjan
int dfn[max_n + 1], low[max_n + 1], timeclock = 0;
int belong[max_n + 1], cnt = 0;
int stack[max_n], in_stack[max_n], rsp = -1;
//new链式前向星
int in[max_n + 1];
int new_able[max_n + 1];
int new_index[max_n + 1];
edge new_edges[max_m];
int new_tot = -1;
int new_head[max_n + 1];
//topo
queue<int>q;
long long sum = 0;
int min_index = NaN;

void add_edge(int u, int v) {
	edges[++tot] = { v,head[u] }; head[u] = tot;
}

void new_add_edge(int u, int v) {
	new_edges[++new_tot] = { v,new_head[u] }; new_head[u] = new_tot;
}

void tarjan(int s) {
	dfn[s] = low[s] = ++timeclock;
	stack[++rsp] = s;
	in_stack[s] = 1;

	for (int i = head[s]; i != -1; i = edges[i].next) {
		int v = edges[i].v;
		if (!dfn[v]) {
			tarjan(v);
			low[s] = min(low[s], low[v]);
		}
		else if (in_stack[v]) {
			low[s] = min(low[s], low[v]);
		}
	}

	if (low[s] == dfn[s]) {
		cnt++;
		while (stack[rsp + 1] != s) {
			belong[stack[rsp]] = cnt;
			new_able[cnt] = min(new_able[cnt], able[stack[rsp]]);
			new_index[cnt] = min(new_index[cnt], stack[rsp]);
			in_stack[stack[rsp]] = 0;
			rsp--;
		}
	}
}

void re_init() {
	for (int i = 1; i <= n; i++) {
		for (int j = head[i]; j != -1; j = edges[j].next) {
			int v = edges[j].v;
			if (belong[i] != belong[v]) {
				in[belong[v]]++;
				new_add_edge(belong[i], belong[v]);
			}
		}
	}
}

void topo() {
	for (int i = 1; i <= cnt; i++) {
		if (!in[i]) {
			if (new_able[i] == NaN) q.push(i);
			else sum += new_able[i];
		}
	}

	if (q.empty()) {
		cout << "YES" << endl;
		cout << sum << endl;
		return;
	}

	while (!q.empty()) {
		int node = q.front();
		q.pop();
		min_index = min(min_index, new_index[node]);
		for (int i = new_head[node]; i != -1; i = new_edges[i].next) {
			int v = new_edges[i].v;
			if (--in[v] == 0 && new_able[v] == NaN) {
				q.push(v);
			}
		}
	}
	cout << "NO" << endl;
	cout << min_index << endl;
	return;
}

int main() {
	memset(head + 1, -1, sizeof(int) * max_n);
	memset(new_head + 1, -1, sizeof(int) * max_n);
	memset(able + 1, 0x3F, sizeof(int) * max_n);
	memset(new_able + 1, 0x3F, sizeof(int) * max_n);
	memset(new_index + 1, 0x3F, sizeof(int) * max_n);
	int p, r, index, a, u, v;
	cin >> n >> p;
	for (int i = 0; i < p; i++) {
		cin >> index >> a;
		able[index] = a;
	}
	cin >> r;
	for (int i = 0; i < r; i++) {
		cin >> u >> v;
		add_edge(u, v);
	}
	for (int i = 1; i <= n; i++) {
		if (!dfn[i]) {
			tarjan(i);
		}
	}
	re_init();
	topo();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WitheredSakura_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值