题目描述
由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果 A 间谍手中掌握着关于 B 间谍的犯罪证据,则称 A 可以揭发 B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。
我们的反间谍机关提供了一份资料,包括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有 n n n 个间谍( n n n 不超过 3000 3000 3000),每个间谍分别用 1 1 1 到 3000 3000 3000 的整数来标识。
请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。
输入格式
第一行只有一个整数 n n n。
第二行是整数 p p p。表示愿意被收买的人数, 1 ≤ p ≤ n 1\le p\le n 1≤p≤n。
接下来的 p p p 行,每行有两个整数,第一个数是一个愿意被收买的间谍的编号,第二个数表示他将会被收买的数额。这个数额不超过 20000 20000 20000。
紧跟着一行只有一个整数 r r r, 1 ≤ r ≤ 8000 1\le r\le8000 1≤r≤8000。然后 r r r 行,每行两个正整数,表示数对 ( A , B ) (A, B) (A,B), A A A 间谍掌握 B B B 间谍的证据。
输出格式
如果可以控制所有间谍,第一行输出 YES
,并在第二行输出所需要支付的贿金最小值。否则输出 NO
,并在第二行输出不能控制的间谍中,编号最小的间谍编号。
样例 #1
样例输入 #1
3
2
1 10
2 100
2
1 3
2 3
样例输出 #1
YES
110
样例 #2
样例输入 #2
4
2
1 100
4 200
2
1 2
3 4
样例输出 #2
NO
3
解题思路:
先来分析一下题意:
间谍分为两类:可收买的,不可收买的
可收买的间谍可以用钱来控制,或者通过其他间谍的情报来控制
不可收买的间谍只能通过其他间谍的情报来控制
题意说明完毕,接下来讲解解题思路:
因为可收买的间谍有两种控制方式,所以贿金存在最小值
先给出两个易于理解的事实:
如果把间谍网络抽象为一张图,以揭发关系为有向边
1)假设这张图无环,那么对于每条链,我们一定会选择链头
2)假设这张图是一个环,那么我们一定会选择收买贿金最少的间谍
基于这两个简单的事实,我们可以一个环中的所有间谍合并为一个间谍,取其中贿金最小值作为新间谍的贿金,同时记录环中索引最小值,新节点与是原环等价的
处理之后形成一张无环图,遍历所有入度为 0 0 0的节点
如果可以贿赂则累加贿金,反之将其加入一个队列中(用于维护不可控间谍)
若队列为空,即所有间谍都可控,那么输出YES
和累加和
反之,进行拓扑排序:取出队首,删除队首节点,减少相临节点入度
如果入度为0 && 不可贿赂
(可以证明,这就是不可控间谍的充分必要条件),将其加入队列
循环执行至队列为空
最后输出NO
和所有被删除节点记录的索引中的最小值
AC代码如下
#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
const int max_n = 3000;
const int max_m = 8e3;
const int NaN = 0x3F3F3F3F;
int n;
//链式前向星
int able[max_n + 1];
struct edge { int v, next; }edges[max_m];
int tot = -1;
int head[max_n + 1];
//tarjan
int dfn[max_n + 1], low[max_n + 1], timeclock = 0;
int belong[max_n + 1], cnt = 0;
int stack[max_n], in_stack[max_n], rsp = -1;
//new链式前向星
int in[max_n + 1];
int new_able[max_n + 1];
int new_index[max_n + 1];
edge new_edges[max_m];
int new_tot = -1;
int new_head[max_n + 1];
//topo
queue<int>q;
long long sum = 0;
int min_index = NaN;
void add_edge(int u, int v) {
edges[++tot] = { v,head[u] }; head[u] = tot;
}
void new_add_edge(int u, int v) {
new_edges[++new_tot] = { v,new_head[u] }; new_head[u] = new_tot;
}
void tarjan(int s) {
dfn[s] = low[s] = ++timeclock;
stack[++rsp] = s;
in_stack[s] = 1;
for (int i = head[s]; i != -1; i = edges[i].next) {
int v = edges[i].v;
if (!dfn[v]) {
tarjan(v);
low[s] = min(low[s], low[v]);
}
else if (in_stack[v]) {
low[s] = min(low[s], low[v]);
}
}
if (low[s] == dfn[s]) {
cnt++;
while (stack[rsp + 1] != s) {
belong[stack[rsp]] = cnt;
new_able[cnt] = min(new_able[cnt], able[stack[rsp]]);
new_index[cnt] = min(new_index[cnt], stack[rsp]);
in_stack[stack[rsp]] = 0;
rsp--;
}
}
}
void re_init() {
for (int i = 1; i <= n; i++) {
for (int j = head[i]; j != -1; j = edges[j].next) {
int v = edges[j].v;
if (belong[i] != belong[v]) {
in[belong[v]]++;
new_add_edge(belong[i], belong[v]);
}
}
}
}
void topo() {
for (int i = 1; i <= cnt; i++) {
if (!in[i]) {
if (new_able[i] == NaN) q.push(i);
else sum += new_able[i];
}
}
if (q.empty()) {
cout << "YES" << endl;
cout << sum << endl;
return;
}
while (!q.empty()) {
int node = q.front();
q.pop();
min_index = min(min_index, new_index[node]);
for (int i = new_head[node]; i != -1; i = new_edges[i].next) {
int v = new_edges[i].v;
if (--in[v] == 0 && new_able[v] == NaN) {
q.push(v);
}
}
}
cout << "NO" << endl;
cout << min_index << endl;
return;
}
int main() {
memset(head + 1, -1, sizeof(int) * max_n);
memset(new_head + 1, -1, sizeof(int) * max_n);
memset(able + 1, 0x3F, sizeof(int) * max_n);
memset(new_able + 1, 0x3F, sizeof(int) * max_n);
memset(new_index + 1, 0x3F, sizeof(int) * max_n);
int p, r, index, a, u, v;
cin >> n >> p;
for (int i = 0; i < p; i++) {
cin >> index >> a;
able[index] = a;
}
cin >> r;
for (int i = 0; i < r; i++) {
cin >> u >> v;
add_edge(u, v);
}
for (int i = 1; i <= n; i++) {
if (!dfn[i]) {
tarjan(i);
}
}
re_init();
topo();
return 0;
}