最长公共子序列 LCS n*logn算法

该代码使用C++编写,通过单调栈解决了一个问题:在给定两个数组a[]和b[]的情况下,找到b[]中的一个最长子序列,要求这个子序列在a[]中的对应下标是单调递增的。程序利用了lower_bound函数和一个额外的low数组来更新答案。
摘要由CSDN通过智能技术生成
#include<bits/stdc++.h>
using namespace std;
//#pragma GCC optimize(2)
#define  endl '\n'
const int N=2e6+10;

typedef long long ll;
ll ans=0,n1,m1;
ll s1=0,s2=0,s3=0,s4=0,max1=0,max2=0,w,min1=100000000,sum=0,n,m,i,j,k,v,l,r;

inline int read() {
	bool sym=0;
	int res=0;
	char ch=getchar();
	while(!isdigit(ch))sym |=(ch =='-'),ch=getchar();
	while(isdigit(ch)) res =(res<<3)+(res<<1)+(ch^48),ch=getchar();
	return sym ? -res : res;
}
void print(int x) {
	if(!x)return;
	print(x/10);
	putchar(x%10+'0');
}
int isPrime(int n) {
	float n_sqrt;
	if(n==1) return 0;
	if(n==2 || n==3) return 1;
	if(n%6!=1 && n%6!=5) return 0;
	n_sqrt=floor(sqrt((float)n));
	for(int i=5; i<=n_sqrt; i+=6) {
		if(n%(i)==0 | n%(i+2)==0) return 0;
	}
	return 1;

}
ll  a[100086], b[100008];
ll t[100008];
ll low[100006] ;

int main() {
	n = read();
	ans=0;
	for (ll i = 1; i <= n; i++) {
		a[i] = read(), t[a[i]] = i;   
	}
	for (ll i = 1; i <= n; i++) {
		b[i] = read(), b[i] = t[b[i]];    
	}
	
	for (ll i = 1; i <= n; i++) { 
		ll pos = lower_bound(low + 1, low + ans + 1, b[i]) - low;
		low[pos] = b[i], ans = max(ans, pos);
	}
	cout << ans << endl;
	return 0;
}

//mio lover

目的:在 b[] 中找到一个最长的子序列使得这个子序列在 a[] 中对应的下标单调递增

so 用T数组模拟,写一个类似LIS的lower-bound;

若下标小于,update low数组,then update ans;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值