77.组合
题目描述
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:输入:n = 1, k = 1
输出:[[1]]
提示:
1 <= n <= 20
1 <= k <= n
问题分析
- 给出两个数n和k,n是范围,k是需要寻找的组合元素的个数;
- 找出所有的组合并返回,组合不用考虑元素的前后顺序;
解法思路
暴力法
这道题很容易可以用两个for循环来轻易的解决,第一层从1开始遍历,第二层从第一层的下一个元素开始遍历;
回溯法
如何组合的元素很多,比如50,我们总不能写50个for循环吧,这个时候我们可以考虑用回溯法来解决这个问题,for循环用来横向遍历,递归用来纵向遍历;
示例代码
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
combineHelper(n,k,1);
return result;
}
private void combineHelper(int n,int k,int startIndex) {
if(path.size() == k) {
result.add(new ArrayList<>(path));
return ;
}
for(int i = startIndex; i <= n - (k - path.size()) + 1; i++) {
path.add(i);
combineHelper(n, k, i + 1);
path.removeLast();
}
}
}
今日总结
今天开始学习回溯算法,回溯本质上是一种暴力的解法,他是穷举所有的组合,然后在组合中寻找的符合要求的目标的一种算法;回溯算法的核心就是递归,回溯算法的问题都可以抽象为树状结构,集合的大小构成了树的宽度,递归的深度,构成了数的深度;