39.组合总和
题目描述
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target 的不同组合数少于 150 个。
示例 1:
输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。
示例 2:输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:输入: candidates = [2], target = 1
输出: []
提示:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
candidates 的所有元素 互不相同
1 <= target <= 40
问题分析
- 给定一个没有重复数字的数组和一个目标值,在数组中找和为目标值的不同组合;
- 组合的元素个数没有限制,数组中的一个元素可以被多次选择;
解法思路
这道题还是用我们的回溯大法,递归的层数表示寻找的组合元素的个数,for循环来遍历数组,我们要先对数组进行排序然后才能开始遍历,只要相加的和恰好为目标值,就存起来,回溯继续遍历;
示例代码
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
Arrays.sort(candidates);
backtracking(res, new ArrayList<>(), candidates, target, 0, 0);
return res;
}
public void backtracking(List<List<Integer>> res,List<Integer> path, int[] candidates, int target,int sum,int idx) {
if(sum == target) {
res.add(new ArrayList<>(path));
return ;
}
for(int i = idx; i < candidates.length; i++) {
if(sum + candidates[i] > target)
break;
path.add(candidates[i]);
backtracking(res,path,candidates,target,sum + candidates[i], i);
path.remove(path.size() - 1);
}
}
}
40.组合总和Ⅱ
题目描述
给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
示例 2:输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]
提示:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
问题分析
- 给定一个数组和一个目标值,数组中寻找是数字和为目标值的组合;
- 数组中的每个数字只能用一次,数组可以有相同的元素;
解法思路
这道题和组合总和不同的地方是,数组中的每一个数字只能出现一次,数组中可能有相同的元素,所以我们需要额外考虑去重的问题;
示例代码
class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
int sum = 0;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Arrays.sort(candidates);
backTracking(candidates, target, 0);
return res;
}
private void backTracking(int[] candidates,int target,int start) {
if(sum == target) {
res.add(new ArrayList<>(path));
return ;
}
for(int i = start; i < candidates.length && sum + candidates[i] <= target; i++) {
if(i > start && candidates[i] == candidates[i - 1]) {
continue;
}
sum += candidates[i];
path.add(candidates[i]);
backTracking(candidates,target,i + 1);
int temp = path.getLast();
sum -= temp;
path.removeLast();
}
}
}
131.分割回文串
题目描述
给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
示例 1:
输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]
示例 2:输入:s = "a"
输出:[["a"]]
提示:
1 <= s.length <= 16
s 仅由小写英文字母组成
问题分析
- 给出一个字符串,将给字符串分割为子串,每个子串都是回文串;
- 给出所有可能的分割方案;
解法思路
这道题还是使用回溯的算法,for循环来遍历整个字符串;
示例代码
class Solution {
List<List<String>> lists = new ArrayList<>();
Deque<String> deque = new LinkedList<>();
public List<List<String>> partition(String s) {
backTracking(s,0);
return lists;
}
private void backTracking(String s,int startIndex) {
if(startIndex >= s.length()) {
lists.add(new ArrayList(deque));
return ;
}
for(int i = startIndex; i < s.length(); i++) {
if(isPalindrome(s,startIndex,i)) {
String str = s.substring(startIndex, i + 1);
deque.addLast(str);
} else {
continue;
}
backTracking(s,i + 1);
deque.removeLast();
}
}
private boolean isPalindrome(String s, int startIndex, int end) {
for(int i = startIndex,j = end; i < j; i++, j--) {
if(s.charAt(i) != s.charAt(j)) {
return false;
}
}
return true;
}
}
今日总结
回溯算法在组合问题的应用是还是很方便且有优势的;