算法训练DAY27|力扣39.组合总和&&力扣40.组合总和Ⅱ&&力扣131.分割回文串

本文介绍了使用回溯算法解决力扣上的三道题目:39.组合总和、40.组合总和II和131.分割回文串。在组合总和问题中,要求找到数组中元素的组合使得和为目标值,允许重复选取;组合总和II与之类似,但每个元素只能选取一次。分割回文串则是将字符串分割为若干回文子串。每道题都通过排序数组和递归回溯的方法找到了所有可能的解。
摘要由CSDN通过智能技术生成

39.组合总和


原题链接:力扣39.组合总和

题目描述


给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。
示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:

输入: candidates = [2], target = 1
输出: []
 

提示:

1 <= candidates.length <= 30
2 <= candidates[i] <= 40
candidates 的所有元素 互不相同
1 <= target <= 40

问题分析


  • 给定一个没有重复数字的数组和一个目标值,在数组中找和为目标值的不同组合;
  • 组合的元素个数没有限制,数组中的一个元素可以被多次选择;

解法思路


这道题还是用我们的回溯大法,递归的层数表示寻找的组合元素的个数,for循环来遍历数组,我们要先对数组进行排序然后才能开始遍历,只要相加的和恰好为目标值,就存起来,回溯继续遍历;

示例代码

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(candidates);
        backtracking(res, new ArrayList<>(), candidates, target, 0, 0);
        return res; 
    }
    public void backtracking(List<List<Integer>> res,List<Integer> path, int[] candidates, int target,int sum,int idx) {
        if(sum == target) {
            res.add(new ArrayList<>(path));
            return ;
        }
        for(int i = idx; i < candidates.length; i++) {
            if(sum + candidates[i] > target)
            break;
            path.add(candidates[i]);
            backtracking(res,path,candidates,target,sum + candidates[i], i);
            path.remove(path.size() - 1);
        }
    }
}


40.组合总和Ⅱ


原题链接:力扣40.组合总和Ⅱ

题目描述


给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]
 

提示:

1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30

问题分析


  • 给定一个数组和一个目标值,数组中寻找是数字和为目标值的组合;
  • 数组中的每个数字只能用一次,数组可以有相同的元素;

解法思路


这道题和组合总和不同的地方是,数组中的每一个数字只能出现一次,数组中可能有相同的元素,所以我们需要额外考虑去重的问题;

示例代码 


class Solution {
    List<List<Integer>> res = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    int sum = 0;
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates);
        backTracking(candidates, target, 0);
        return res;
    }
    private void backTracking(int[] candidates,int target,int start) {
        if(sum == target) {
            res.add(new ArrayList<>(path));
            return ;
        }
        for(int i = start; i < candidates.length && sum + candidates[i] <= target; i++) {
            if(i > start && candidates[i] == candidates[i - 1]) {
                continue;
            }
            sum += candidates[i];
            path.add(candidates[i]);
            backTracking(candidates,target,i + 1);
            int temp = path.getLast();
            sum -= temp;
            path.removeLast();
        }
    }
}


131.分割回文串


原题链接:力扣131.分割回文串

题目描述


给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]
示例 2:

输入:s = "a"
输出:[["a"]]
 

提示:

1 <= s.length <= 16
s 仅由小写英文字母组成

问题分析


  • 给出一个字符串,将给字符串分割为子串,每个子串都是回文串;
  • 给出所有可能的分割方案; 

解法思路


这道题还是使用回溯的算法,for循环来遍历整个字符串;

示例代码


class Solution {
    List<List<String>> lists = new ArrayList<>();
    Deque<String> deque = new LinkedList<>();
    public List<List<String>> partition(String s) {
        backTracking(s,0);
        return lists;
    }
    private void backTracking(String s,int startIndex) {
        if(startIndex >= s.length()) {
            lists.add(new ArrayList(deque));
            return ;
        }
        for(int i = startIndex; i < s.length(); i++) {
          if(isPalindrome(s,startIndex,i)) {
                String str = s.substring(startIndex, i + 1);
            deque.addLast(str);
        } else {
            continue;
        }
        backTracking(s,i + 1);
        deque.removeLast();
        }
    }
    private boolean isPalindrome(String s, int startIndex, int end) {
        for(int i = startIndex,j = end; i < j; i++, j--) {
            if(s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }
}


今日总结


回溯算法在组合问题的应用是还是很方便且有优势的; 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Syhaun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值