问题1
题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:输入:m = 7, n = 3
输出:28
示例 4:输入:m = 3, n = 3
输出:6
问题分析
- 题目给定一个m*n的数组表示网格,网格的左上角为起始点,右下角为终点;
- 有一个机器人从起始点往终点走,每次只能往下或者往右移动一个单位;
- 求有多少中走法;
解法思路
这道题用动态规划来做的话,首先先创建一个二维数组表示机器人走到当前点有多少种走法;然后时确定递推公式,当前点只能有上面或者左边走来,所有当前位置的路径数等于上面和左边路径数之和;dp数组的初始化就是第一行和第一列都为1,因为只有一条路径;
示例代码
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++)
dp[i][0] = 1;
for(int i = 0; i < n; i++)
dp[0][i] = 1;
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++)aa {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
63.不同路径Ⅱ
题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
示例 2:
输入:obstacleGrid = [[0,1],[0,0]]
输出:1
提示:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1
问题分析
- 给定一个二维数组表示网格,其中0表示空位置,1表示障碍物;
- 机器人从左上角走到右下角,每次只能向右或者向下走一个单位;
- 求有多少种路径;
解法思路
这道题和上一道题整体思路上没有任何变化,只不过其中有一些小细节和需要处理; 首先,加入了障碍物的因素,因此,dp数组中障碍物对用的元素都必须初始化为0;其次如果障碍物出现在第一行或者是第一列,那么在障碍物前的都初始化为1,障碍物后的都初始化为0;
示例代码
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int [][]dp = new int [m][n];
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
if(obstacleGrid[i][j] == 1)
dp[i][j] = 0;
else
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
今日总结
今天做了两道不同路劲的题目,题目本事不是很难,思路有了,代码很快就写出了了,更重要的是理解dp算法的思想;