题目:组合总和
描述:
给你一个 无重复元素 的整数数组 candidates
和一个目标整数 target
,找出 candidates
中可以使数字和为目标数 target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的不同组合数少于 150
个。
示例 1:
输入:candidates =[2,3,6,7],
target =7
输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。
示例 2:
输入: candidates = [2,3,5],
target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2],
target = 1
输出: []
关键词:回溯
说明:
对于这类找可行解的题目,一般采用回溯算法,搜索可行解。
我们可以定义一个搜索函数dfs(int*candidates, int candidates_size,int target ,int idx),其中candidates为题目中给定的数组,candidates_size为candidates的大小,target表示与题目给定的target的‘距离’,当距离为0时,说明搜索到的元素为答案。idx表示现在遍历到candidates中的位置
因此,我们需要用一个数组来暂时接受答案,姑且设置为CombineArr。
根据题目可知,数组中的每个元素可以用多次,因此我们在遍历的时候有两个选择,一个选择就是不选当前元素,此时执行dfs(candidates,candidates_size,target,idx+1);另一个选择就是选上当前元素,此时将当前元素加到CombineArr数组中,再执行dfs(candidates,candidate_size,target-candidates[idx],idx),可能会有码友会疑问,为什么这里不是idx+1?因为题目中所言数组中的元素可以选多次,idx保证了下次搜索还是从当前位置开始。
终止条件:我们知道,一旦使用递归就应该注意它的终止条件,对于此题,终止条件有两个。
1. target = 0。当target=0时,CombineArr中的元素即为一个可行解。
2. idx = candidates_size。此时已经搜索完毕。
特别地,因为我们是采用了回溯算法,在执行完第二个选择中的dfs后,CombineArr_size需要减一,因为第二个选择中,我们已经把candidates[idx]加入到了CombineArr中,CombineArr的size增加了一,然后执行下一层的运算。然而对于本层来讲,我们希望CombineArr_size不变,因此在本层运算结束时,减一保证上一层的CombineArr_size不变。(因为我的CombineArr_size设置的时全局变量,因此需要减一,码友们也可以将其作为dfs的参数,这样就不会有减一这个操作了)
int ColunmSize;
int AnsSize;
int candidatesSize_tmp;
int*ColumnArr;
int CombineArrSize;
void dfs(int*candidates,int target,int*CombinedArr,int idx,int**ans){
if(idx == candidatesSize_tmp) return;
if(target == 0){
int*tmp = (int*)malloc(sizeof(int)*CombineArrSize);
for(int i = 0 ; i < CombineArrSize ;i++){
tmp[i] = CombinedArr[i];
}
ans[AnsSize] = tmp;
ColumnArr[AnsSize++] = CombineArrSize;
return;
}
dfs(candidates,target,CombinedArr,idx+1,ans);
if(target-candidates[idx]>=0){
CombinedArr[CombineArrSize++] = candidates[idx];
dfs(candidates,target-candidates[idx],CombinedArr,idx,ans);
CombineArrSize--;
}
}
int** combinationSum(int* candidates, int candidatesSize, int target, int* returnSize, int** returnColumnSizes) {
int CombinedArr[2001];
candidatesSize_tmp = candidatesSize;
AnsSize = CombineArrSize = 0;
int**ans = (int**)malloc(sizeof(int*)*2001);
ColumnArr = (int*)malloc(sizeof(int)*2001);
dfs(candidates,target,CombinedArr,0,ans);
*returnSize = AnsSize;
*returnColumnSizes = ColumnArr;
return ans;
}