LeetCode每日一题#39

题目:组合总和

描述:

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5]target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

关键词:回溯

说明:

对于这类找可行解的题目,一般采用回溯算法,搜索可行解。

我们可以定义一个搜索函数dfs(int*candidates, int candidates_size,int target ,int idx),其中candidates为题目中给定的数组,candidates_size为candidates的大小,target表示与题目给定的target的‘距离’,当距离为0时,说明搜索到的元素为答案。idx表示现在遍历到candidates中的位置

因此,我们需要用一个数组来暂时接受答案,姑且设置为CombineArr。

根据题目可知,数组中的每个元素可以用多次,因此我们在遍历的时候有两个选择,一个选择就是不选当前元素,此时执行dfs(candidates,candidates_size,target,idx+1);另一个选择就是选上当前元素,此时将当前元素加到CombineArr数组中,再执行dfs(candidates,candidate_size,target-candidates[idx],idx),可能会有码友会疑问,为什么这里不是idx+1?因为题目中所言数组中的元素可以选多次,idx保证了下次搜索还是从当前位置开始。

终止条件:我们知道,一旦使用递归就应该注意它的终止条件,对于此题,终止条件有两个。

1. target = 0。当target=0时,CombineArr中的元素即为一个可行解。

2. idx = candidates_size。此时已经搜索完毕。

特别地,因为我们是采用了回溯算法,在执行完第二个选择中的dfs后,CombineArr_size需要减一,因为第二个选择中,我们已经把candidates[idx]加入到了CombineArr中,CombineArr的size增加了一,然后执行下一层的运算。然而对于本层来讲,我们希望CombineArr_size不变,因此在本层运算结束时,减一保证上一层的CombineArr_size不变。(因为我的CombineArr_size设置的时全局变量,因此需要减一,码友们也可以将其作为dfs的参数,这样就不会有减一这个操作了)

int ColunmSize;
int AnsSize;
int candidatesSize_tmp;
int*ColumnArr;
int CombineArrSize;
void dfs(int*candidates,int target,int*CombinedArr,int idx,int**ans){
    if(idx == candidatesSize_tmp) return;
    if(target == 0){
        int*tmp = (int*)malloc(sizeof(int)*CombineArrSize);
        for(int i = 0 ; i < CombineArrSize ;i++){
            tmp[i] = CombinedArr[i];
        }
        ans[AnsSize] = tmp;
        ColumnArr[AnsSize++] = CombineArrSize;
        return;
    }
    dfs(candidates,target,CombinedArr,idx+1,ans);
    if(target-candidates[idx]>=0){
        CombinedArr[CombineArrSize++] = candidates[idx];
        dfs(candidates,target-candidates[idx],CombinedArr,idx,ans);
        CombineArrSize--;
        }
}
int** combinationSum(int* candidates, int candidatesSize, int target, int* returnSize, int** returnColumnSizes) {
   int CombinedArr[2001];
   candidatesSize_tmp = candidatesSize;
   AnsSize = CombineArrSize = 0;
   int**ans = (int**)malloc(sizeof(int*)*2001);
   ColumnArr = (int*)malloc(sizeof(int)*2001);
   dfs(candidates,target,CombinedArr,0,ans);
   *returnSize = AnsSize;
   *returnColumnSizes = ColumnArr;
   return ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值