通过使用json模块和pandas库加载JSON数据并转换为DataFrame进行初步检查的程序主要处理的是数据格式和基本的文本清理。对于语句不通顺或语言逻辑混乱的问题,自动检测和修正确实是一个更复杂的任务。这种问题需要更高级的自然语言处理(NLP)技术。
高级数据清洗步骤
-
使用NLP模型检测语句质量
- 利用预训练的语言模型,如GPT-4,来检测语句的流畅性和逻辑性。
-
自动修正不通顺的句子
- 使用语言模型自动修正不通顺的句子。
-
手动检查和修正
- 由于自动方法可能无法完全准确,手动检查和修正依然是必要的。
使用NLP模型的示例代码
下面的代码示例展示了如何使用NLP模型来检测和修正不通顺的句子。这里使用Hugging Face的Transformers库和GPT-3模型。
import openai
import pandas as pd
# 设置OpenAI API密钥
openai.api_key = 'your-openai-api-key'
def check_and_fix_sentence(sentence):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=f"Check and improve the following sentence for grammatical correctness and clarity: {sentence}",
max_tokens=150,
n=1,
stop=None,
temperature=0.5,
)
return response.choices[0].text.strip()
# 加载清理后的数据
df = pd.read_json('/mnt/data/cleaned_legal_counsel.json', lines=True)
# 检查并修正 'instruction' 字段
df['instruction_fixed'] = df['instruction'].apply(check_and_fix_sentence)
# 检查并修正 'output' 字段
df['output_fixed'] = df['output'].apply(check_and_fix_sentence)
# 保存修正后的数据
df.to_json('/mnt/data/fixed_legal_counsel.json', orient='records', lines=True, force_ascii=False)
整合高级数据清洗流程
将高级数据清洗步骤与之前的基础清洗步骤整合起来,以确保数据质量。
import json
import pandas as pd
import re
import openai
# 设置OpenAI API密钥
openai.api_key = 'your-openai-api-key'
def clean_text(text):
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^\w\s\u4e00-\u9fa5,.,。!?]', '', text)
return text.strip()
def check_and_fix_sentence(sentence):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=f"Check and improve the following sentence for grammatical correctness and clarity: {sentence}",
max_tokens=150,
n=1,
stop=None,
temperature=0.5,
)
return response.choices[0].text.strip()
# 加载数据
with open('/mnt/data/legal_counsel.json', 'r', encoding='utf-8') as file:
data = json.load(file)
# 转换为DataFrame
df = pd.DataFrame(data)
# 检查并处理缺失值
df.drop(columns=['input'], inplace=True)
df.dropna(subset=['instruction', 'output'], inplace=True)
# 检查并删除重复值
df.drop_duplicates(inplace=True)
# 清理文本数据
df['instruction'] = df['instruction'].apply(clean_text)
df['output'] = df['output'].apply(clean_text)
# 确保所有问题都以问号结尾
df['instruction'] = df['instruction'].apply(lambda x: x if x.endswith('?') else x + '?')
# 检查并修正 'instruction' 和 'output' 字段
df['instruction_fixed'] = df['instruction'].apply(check_and_fix_sentence)
df['output_fixed'] = df['output'].apply(check_and_fix_sentence)
# 保存修正后的数据
df.to_json('/mnt/data/fixed_legal_counsel.json', orient='records', lines=True, force_ascii=False)
print("Data cleaning and fixing complete. Cleaned data saved to /mnt/data/fixed_legal_counsel.json")
总结
通过结合基础的清洗步骤和高级的NLP技术,我们可以在同一数据格式的基础上,更全面地提升数据的质量。自动检测和修正语句不通顺或逻辑混乱的问题需要利用语言模型,并且在实际应用中可能需要手动检查和调整以确保准确性。这样处理后的数据集可以更好地用于ChatGLM的训练和应用。